Sorry, JavaScript must be enabled.Change your browser options, then try again.
Show ONLY:
Collection type:
Licence type:
Category:
Person:
Project:
Showing results for: [ Grundy, Mike ]
Using the Land-Use Trade-Offs (LUTO) model, this data collection was produced via a comprehensive, detailed, integrated, and quantitative scenario analysis of land-use and sustainability for Australia... more’s intensive-use agricultural land to 2050, under intersecting global change and domestic policies, and considering key uncertainties. We assessed land use competition between multiple land uses and assessed sustainability of economic returns and multiple ecosystem services at high spatial (1.1 km grid cell) and temporal (annual) resolution. Results available are for 648 scenarios covering combinations of four global outlooks, three general circulation climate models, three domestic land-use policies, three productivity growth rates, three land-use change adoption hurdle rates, and two capacity constraint settings. Outputs included for each scenario are: - annual land-use layers - summary data table - graphical dashboard summary - animation of potential land-use change, drivers, and impacts. This analysis was conducted in conjunction with CSIRO’s Australian National Outlook 2015 initiative to assess future potential land-use change and the impacts for the sustainability of ecosystem services. A full description of the methods and synthesis of the results can be found in the papers listed in the Related Information below and freely available via email from the author. The data is provided to support a national conversation on the future for Australian land systems, public decision-making and policy design, and further scientific research. less
SIP 59 LUTO land use modelling science p - Modelling - Published 31 Jul 2020
Traditional soil maps have helped us to better understand soil, to form our concepts and to teach and transfer our ideas about it, and so they have been used for many purposes. Although, soil maps are... more available in many countries, there is a need for them to be updated because they are often deficient in that their spatial delineations and their descriptions are subjective and lack assessments of uncertainty. Updating them is a priority for federal soil surveys worldwide as well as for research, teaching and communication. New data from sensors and quantitative ‘digital’ methods provide us with the tools to do so. Here, we present an approach to update large scale, national soil maps with data derived from a combination of traditional soil profile classifications, classifications made with visible–near infrared (vis–NIR) spectroscopy, and digital soil class mapping (DSM). Our results present an update of the Australian Soil Classification (ASC) orders map. The overall error rate of the DSM model, tested on an independent validation set, was 55.6%, and a few of the orders were poorly classified. We discuss the possible reasons for these errors, but argue that compared to the previous ASC maps, our classification was derived objectively, using currently best available data sets and methods, the classification model was interpretable in terms of the factors of soil formation, the modelling produced a 1×1 km resolution soil map with estimates of spatial uncertainty for each soil order and our map has no artefacts at state and territory borders.less
CLSD TERN Facility No 9 Info Grid - National Soil Grid - Published 28 Mar 2018
The Soil Facility produced a range of digital soil attribute products. Each product contains six digital soil attribute maps, and their upper and lower confidence limits, representing the soil attribu... morete at six depths: 0-5cm, 5-15cm, 15-30cm, 30-60cm, 60-100cm and 100-200cm. These depths are consistent with the specifications of the GlobalSoilMap.net project (http://www.globalsoilmap.net/). The digital soil attribute maps are in raster format at a resolution of 3 arc sec (~90 x 90 m pixels). Attributes included: Available Water Capacity; Bulk Density - Whole Earth; Clay; Effective Cation Exchange Capacity; pH - CaCl2; Silt; Sand; Total Nitrogen; Total Phosphorus. Period (temporal coverage; approximately): 1950-2013; Spatial resolution: 3 arc seconds (approx 90m); Total number of gridded maps for this attribute: 18; Number of pixels with coverage per layer: 2007M (49200 * 40800); Total size before compression: about 8GB; Total size after compression: about 4GB; Data license : Creative Commons Attribution 3.0 (CC By); Target data standard: GlobalSoilMap specifications; Format: GeoTIFF.less
1181.2 TERN Facility No9 InfoGrid GRUNDY - National Soil Grid - Published 19 Mar 2018
These are products of the Soil and Landscape Grid of Australia Facility generated through disaggregation of the Western Australian soil mapping. There are 9 soil attribute products available from the ... moreSoil Facility: Available Water Holding Capacity - Volumetric (AWC); Bulk Density - Whole Earth (BDw); Bulk Density - Fine Earth (BDf); Clay (CLY); Course Fragments (CFG); Electrical Conductivity (ECD); pH Water (pHw); Sand (SND); Silt (SLT). Each soil attribute product is a collection of 6 depth slices. Each depth raster has an upper and lower uncertainty limit raster associated with it. The depths provided are 0-5cm, 5-15cm, 15-30cm, 30-60cm, 60-100cm & 100-200cm, consistent with the Specifications of the GlobalSoilMap. The DSMART tool (Odgers et al. 2014) tool was used in a downscaling process to translate legacy soil landscape mapping to 3” resolution (approx. 100m cell size) raster predictions of soil classes (Holmes et al. Submitted). The soil class maps were then used to produce corresponding soil property surfaces using the PROPR tool (Odgers et al. 2015; Odgers et al. Submitted). Legacy mapping was compiled for the state of WA from surveys ranging in map scale from 1:20,000 to 1:2,000,000 (Schoknecht et al., 2004). The polygons are attributed with the soils and proportions of soils within polygons however individual soils were not explicitly spatially defined. These new disaggregated map products aim to incorporate expert soil surveyor knowledge embodied in legacy polygon soil maps, while providing re-interpreted soil spatial information at a scale that is more suited to on-ground decision making. Note: The DSMART-derived dissagregated legacy soil mapping products provide different spatial predictions of soil properties to the national TERN Soil Grid products derived by Cubist (data mining) and kriging based on site data by Viscarra Rossel et al. (Submitted). Where they overlap, the national prediction layers and DSMART products can be considered complementary predictions. They will offer varying spatial reliability (/ uncertainty) depending on the availability of representative site data (for national predictions) and the scale and expertise of legacy mapping. The national predictions and DSMART disaggregated layers have also been merged as a means to present the best available (lowest statistical uncertainty) data from both products (Clifford et al. In Prep). Previous versions of this collection contained Depths layers. These have been removed as the units do not comply with Global Soil Map specifications.less
These products are derived from disaggregation of legacy soil mapping in the agricultural zone of South Australia using the DSMART tool (Odgers et al. 2014a); produced for the Soil and Landscape Grid ... moreof Australia Facility. There are 10 soil attribute products available from the Soil Facility: Available Water Capacity (AWC); Bulk Density - Whole Earth (BDw); Cation Exchange Capacity (CEC); Clay (CLY); Coarse Fragments (CFG); Electrical Conductivity (ECD); Organic Carbon (SOC); pH - CaCl2( pHc); Sand (SND); Silt (SLT). Each soil attribute product is a collection of 6 depth slices (except for effective depth and total depth). Each depth raster has an upper and lower uncertainty limit raster associated with it. The depths provided are 0-5cm, 5-15cm, 15-30cm, 30-60cm, 60-100cm & 100-200cm, consistent with the specifications of the GlobalSoilMap. The DSMART tool was used in a downscaling process to translate legacy soil landscape mapping to 3” resolution (approx. 100m cell size) raster predictions of soil classes and corresponding soil properties. Legacy mapping was performed at 1:50,000 and 1:100,000 scales to delineate associated soils within polygons however individual soils were not explicitly spatially defined. These new disaggregated map products aim to incorporate expert soil surveyor knowledge embodied in legacy polygon soil maps, while providing re-interpreted soil spatial information at a scale that is more suited to on-ground decision making. Note: The DSMART-derived dissagregated legacy soil mapping products provide different spatial predictions of soil properties to the national TERN Soil Grid products derived by Cubist (data mining) kriging based on site data by Viscarra Rossel et al. (2014). Where they overlap, the national prediction layers and DSMART products can be considered complementary predictions. They will offer varying spatial reliability (/ uncertainty) depending on the availability of representative site data (for national predictions) and the scale and expertise of legacy mapping. The national predictions and DSMART disaggregated layers have also been merged as a means to present the best available (lowest statistical uncertainty) data from both products (Clifford et al. 2014). Previous versions of this collection contained Depths layers. These have been removed as the units do not comply with Global Soil Map specifications.less
These are the soil attribute products of the Tasmanian Soil Attribute Grids. There are 8 soil attribute products available from the TERN Soil Facility. Each soil attribute product is a collection of 6... more depth slices. Each depth raster has an upper and lower uncertainty limit raster associated with it. The depths provided are 0-5cm, 5-15cm, 15-30cm, 30-60cm, 60-100cm & 100-200cm, consistent with the Specifications of the GlobalSoilMap. Attributes: pH - Water (pHw); Electical Conductivity dS/m (ECD); Clay % (CLY); Sand % (SND); Silt % (SLT); Bulk Density - Whole Earth Mg/m3 (BDw); Organic Carbon % (SOC); Coarse Fragments >2mm (CFG). These products were developed using datasets held by the Tasmanian Department of Primary Industries Parks Water & Environment (DPIPWE) Soils Database. The mapping was made by using spatial modelling and digital soil mapping (DSM) techniques to produce a fine resolution 3 arc-second grid of soil attribute values and their uncertainties, across all of Tasmania. Note: Previous versions of this collection contained a Depth layer. This has been removed as the units do not comply with Global Soil Map specifications.less
This is Version 1 of the Australian Soil Available Water Capacity product of the Soil and Landscape Grid of Australia. The Soil and Landscape Grid of Australia has produced a range of digital soil a... morettribute products. Each product contains six digital soil attribute maps, and their upper and lower confidence limits, representing the soil attribute at six depths: 0-5cm, 5-15cm, 15-30cm, 30-60cm, 60-100cm and 100-200cm. These depths are consistent with the specifications of the GlobalSoilMap.net project (http://www.globalsoilmap.net/). The digital soil attribute maps are in raster format at a resolution of 3 arc sec (~90 x 90 m pixels). These maps are generated by combining the best available Digital Soil Mapping (DSM) products available across Australia. Attribute Definition: Available water capacity computed for each of the specified depth increments; Units: %; Period (temporal coverage; approximately): 1950-2013; Spatial resolution: 3 arc seconds (approx 90m); Total number of gridded maps for this attribute: 18; Number of pixels with coverage per layer: 2007M (49200 * 40800); Total size before compression: about 8GB; Total size after compression: about 4GB; Data license : Creative Commons Attribution 4.0 (CC BY); Variance explained (cross-validation): 0.4%; Target data standard: GlobalSoilMap specifications; Format: GeoTIFF. less
1181.2 TERN Facility No9 InfoGrid GRUNDY - National Soil Grid - Published 16 Mar 2018
This is Version 1 of the Australian Soil Bulk Density - Whole Earth product of the Soil and Landscape Grid of Australia. The Soil and Landscape Grid of Australia has produced a range of digital soil... more attribute products. Each product contains six digital soil attribute maps, and their upper and lower confidence limits, representing the soil attribute at six depths: 0-5cm, 5-15cm, 15-30cm, 30-60cm, 60-100cm and 100-200cm. These depths are consistent with the specifications of the GlobalSoilMap.net project (http://www.globalsoilmap.net/). The digital soil attribute maps are in raster format at a resolution of 3 arc sec (~90 x 90 m pixels). These maps are generated by combining the best available Digital Soil Mapping (DSM) products available across Australia. Attribute Definition: Bulk Density of the whole soil (including coarse fragments) in mass per unit volume by a method equivalent to the core method; Units: g/cm3; Period (temporal coverage; approximately): 1950-2013; Spatial resolution: 3 arc seconds (approx 90m); Total number of gridded maps for this attribute: 18; Number of pixels with coverage per layer: 2007M (49200 * 40800); Total size before compression: about 8GB; Total size after compression: about 4GB; Data license : Creative Commons Attribution 4.0 (CC BY); Variance explained (cross-validation): 0.4%; Target data standard: GlobalSoilMap specifications; Format: GeoTIFF. less
This is Version 1 of the Australian Soil Clay product of the Soil and Landscape Grid of Australia. The Soil and Landscape Grid of Australia has produced a range of digital soil attribute products. E... moreach product contains six digital soil attribute maps, and their upper and lower confidence limits, representing the soil attribute at six depths: 0-5cm, 5-15cm, 15-30cm, 30-60cm, 60-100cm and 100-200cm. These depths are consistent with the specifications of the GlobalSoilMap.net project (http://www.globalsoilmap.net/). The digital soil attribute maps are in raster format at a resolution of 3 arc sec (~90 x 90 m pixels). These maps are generated by combining the best available Digital Soil Mapping (DSM) products available across Australia. Attribute Definition: 2 μm mass fraction of the less than 2 mm soil material determined using the pipette method; Units: %; Period (temporal coverage; approximately): 1950-2013; Spatial resolution: 3 arc seconds (approx 90m); Total number of gridded maps for this attribute: 18; Number of pixels with coverage per layer: 2007M (49200 * 40800); Total size before compression: about 8GB; Total size after compression: about 4GB; Data license : Creative Commons Attribution 4.0 (CC BY); Target data standard: GlobalSoilMap specifications; Format: GeoTIFF. less
This is Version 2 of the Depth of Regolith product of the Soil and Landscape Grid of Australia (produced 2015-06-01). The Soil and Landscape Grid of Australia has produced a range of digital soil att... moreribute products. The digital soil attribute maps are in raster format at a resolution of 3 arc sec (~90 x 90 m pixels). Attribute Definition: The regolith is the in situ and transported material overlying unweathered bedrock; Units: metres; Spatial prediction method: data mining using piecewise linear regression; Period (temporal coverage; approximately): 1900-2013; Spatial resolution: 3 arc seconds (approx 90m); Total number of gridded maps for this attribute:3; Number of pixels with coverage per layer: 2007M (49200 * 40800); Total size before compression: about 8GB; Total size after compression: about 4GB; Data license : Creative Commons Attribution 4.0 (CC BY); Variance explained (cross-validation): R^2 = 0.38; Target data standard: GlobalSoilMap specifications; Format: GeoTIFF.less
This is Version 1 of the Australian Soil Effective Cation Exchange Capacity product of the Soil and Landscape Grid of Australia. The Soil and Landscape Grid of Australia has produced a range of digi... moretal soil attribute products. Each product contains six digital soil attribute maps, and their upper and lower confidence limits, representing the soil attribute at six depths: 0-5cm, 5-15cm, 15-30cm, 30-60cm, 60-100cm and 100-200cm. These depths are consistent with the specifications of the GlobalSoilMap.net project (http://www.globalsoilmap.net/). The digital soil attribute maps are in raster format at a resolution of 3 arc sec (~90 x 90 m pixels). These maps are generated by combining the best available Digital Soil Mapping (DSM) products available across Australia. Attribute Definition: Cations extracted using barium chloride (BaCl2) plus exchangeable H + Al; Units: meq/100g; Period (temporal coverage; approximately): 1950-2013; Spatial resolution: 3 arc seconds (approx 90m); Total number of gridded maps for this attribute: 18; Number of pixels with coverage per layer: 2007M (49200 * 40800); Total size before compression: about 8GB; Total size after compression: about 4GB; Data license : Creative Commons Attribution 4.0 (CC BY); Target data standard: GlobalSoilMap specifications; Format: GeoTIFF. less
This is Version 1 of the Australian Soil Organic Carbon product of the Soil and Landscape Grid of Australia. The Soil and Landscape Grid of Australia has produced a range of digital soil attribute p... moreroducts. Each product contains six digital soil attribute maps, and their upper and lower confidence limits, representing the soil attribute at six depths: 0-5cm, 5-15cm, 15-30cm, 30-60cm, 60-100cm and 100-200cm. These depths are consistent with the specifications of the GlobalSoilMap.net project (http://www.globalsoilmap.net/). The digital soil attribute maps are in raster format at a resolution of 3 arc sec (~90 x 90 m pixels). These maps are generated by combining the best available Digital Soil Mapping (DSM) products available across Australia. Attribute Definition: Mass fraction of carbon by weight in the less than 2 mm soil material as determined by dry combustion at 900° C; Units: %; Period (temporal coverage; approximately): 2000-2013; Spatial resolution: 3 arc seconds (approx 90m); Total number of gridded maps for this attribute: 18; Number of pixels with coverage per layer: 2007M (49200 * 40800); Total size before compression: about 8GB; Total size after compression: about 4GB; Data license : Creative Commons Attribution 4.0 (CC BY); Target data standard: GlobalSoilMap specifications; Format: GeoTIFF. less
This is Version 1 of the Australian Soil pH - CaCl2 product of the Soil and Landscape Grid of Australia. The Soil and Landscape Grid of Australia has produced a range of digital soil attribute produ... morects. Each product contains six digital soil attribute maps, and their upper and lower confidence limits, representing the soil attribute at six depths: 0-5cm, 5-15cm, 15-30cm, 30-60cm, 60-100cm and 100-200cm. These depths are consistent with the specifications of the GlobalSoilMap.net project (http://www.globalsoilmap.net/). The digital soil attribute maps are in raster format at a resolution of 3 arc sec (~90 x 90 m pixels). These maps are generated by combining the best available Digital Soil Mapping (DSM) products available across Australia. Attribute Definition: pH of 1:5 soil/0.01M calcium chloride extract; Units: None; Period (temporal coverage; approximately): 1950-2013; Spatial resolution: 3 arc seconds (approx 90m); Total number of gridded maps for this attribute: 18; Number of pixels with coverage per layer: 2007M (49200 * 40800); Total size before compression: about 8GB; Total size after compression: about 4GB; Data license : Creative Commons Attribution 4.0 (CC BY); Target data standard: GlobalSoilMap specifications; Format: GeoTIFF. less
This is Version 1 of the Australian Soil Sand product of the Soil and Landscape Grid of Australia. The Soil and Landscape Grid of Australia has produced a range of digital soil attribute products. E... moreach product contains six digital soil attribute maps, and their upper and lower confidence limits, representing the soil attribute at six depths: 0-5cm, 5-15cm, 15-30cm, 30-60cm, 60-100cm and 100-200cm. These depths are consistent with the specifications of the GlobalSoilMap.net project (http://www.globalsoilmap.net/). The digital soil attribute maps are in raster format at a resolution of 3 arc sec (~90 x 90 m pixels). These maps are generated by combining the best available Digital Soil Mapping (DSM) products available across Australia. Attribute Definition: 200 μm - 2 mm mass fraction of the less than 2 mm soil material determined using the pipette method; Units: %; Period (temporal coverage; approximately): 1950-2013; Spatial resolution: 3 arc seconds (approx 90m); Total number of gridded maps for this attribute: 18; Number of pixels with coverage per layer: 2007M (49200 * 40800); Total size before compression: about 8GB; Total size after compression: about 4GB; Data license : Creative Commons Attribution 4.0 (CC BY); Target data standard: GlobalSoilMap specifications; Format: GeoTIFF. less
This is Version 1 of the Australian Soil Silt product of the Soil and Landscape Grid of Australia. The Soil and Landscape Grid of Australia has produced a range of digital soil attribute products. E... moreach product contains six digital soil attribute maps, and their upper and lower confidence limits, representing the soil attribute at six depths: 0-5cm, 5-15cm, 15-30cm, 30-60cm, 60-100cm and 100-200cm. These depths are consistent with the specifications of the GlobalSoilMap.net project (http://www.globalsoilmap.net/). The digital soil attribute maps are in raster format at a resolution of 3 arc sec (~90 x 90 m pixels). These maps are generated by combining the best available Digital Soil Mapping (DSM) products available across Australia. Attribute Definition: 2-200 μm mass fraction of the less than 2 mm soil material determined using the pipette method; Units: %; Period (temporal coverage; approximately): 1950-2013; Spatial resolution: 3 arc seconds (approx 90m); Total number of gridded maps for this attribute: 18; Number of pixels with coverage per layer: 2007M (49200 * 40800); Total size before compression: about 8GB; Total size after compression: about 4GB; Data license : Creative Commons Attribution 4.0 (CC BY); Target data standard: GlobalSoilMap specifications; Format: GeoTIFF. less
This is Version 1 of the Soil Depth product of the Soil and Landscape Grid of Australia. The Soil and Landscape Grid of Australia has produced a range of digital soil attribute products. This depth ... moreproduct estimates the depth of soil down to 2 metres. The digital soil attribute maps are in raster format at a resolution of 3 arc sec (~90 x 90 m pixels). The soil attribute products are provided as continuous maps that represent each of six depth intervals to a maximum depth of 2 metres. We acknowledge that soil depth is variable across Australia, and in some landscapes there might be no soil or soil might be shallower than 2 metres. We have provided continuous maps because of the relative unavailability of data on soil depth. Further, existing data on depth is biased to near surface layers and there are few records that extend beyond 1.5m. Therefore, we provide here, our best estimate of soil depth to allow users to generate masks, which might be used together with the attribute maps to approximate the presence of areas with no soil or areas with shallow soil. We encourage users to draw on local data and expertise for such assessments. Attribute Definition: Depth of soil profile (A & B horizons); Units: metres; Period (temporal coverage; approximately): 1950-2013; Spatial resolution: 3 arc seconds (approx 90m); Total number of gridded maps for this attribute: 3; Number of pixels with coverage per layer: 2007M (49200 * 40800); Total size before compression: about 8GB; Total size after compression: about 4GB; Data license : Creative Commons Attribution 4.0 (CC BY); Target data standard: GlobalSoilMap specifications; Format: GeoTIFF.less
This is Version 1 of the Australian Soil Total Nitrogen product of the Soil and Landscape Grid of Australia. The Soil and Landscape Grid of Australia has produced a range of digital soil attribute p... moreroducts. Each product contains six digital soil attribute maps, and their upper and lower confidence limits, representing the soil attribute at six depths: 0-5cm, 5-15cm, 15-30cm, 30-60cm, 60-100cm and 100-200cm. These depths are consistent with the specifications of the GlobalSoilMap.net project (http://www.globalsoilmap.net/). The digital soil attribute maps are in raster format at a resolution of 3 arc sec (~90 x 90 m pixels). These maps are generated by combining the best available Digital Soil Mapping (DSM) products available across Australia. Attribute Definition: Total nitrogen; Units: %; Period (temporal coverage; approximately): 1950-2013; Spatial resolution: 3 arc seconds (approx 90m); Total number of gridded maps for this attribute: 18; Number of pixels with coverage per layer: 2007M (49200 * 40800); Total size before compression: about 8GB; Total size after compression: about 4GB; Data license : Creative Commons Attribution 4.0 (CC BY); Target data standard: GlobalSoilMap specifications; Format: GeoTIFF.less
This is Version 1 of the Australian Soil Total Phosphorus product of the Soil and Landscape Grid of Australia. The Soil and Landscape Grid of Australia has produced a range of digital soil attribute... more products. Each product contains six digital soil attribute maps, and their upper and lower confidence limits, representing the soil attribute at six depths: 0-5cm, 5-15cm, 15-30cm, 30-60cm, 60-100cm and 100-200cm. These depths are consistent with the specifications of the GlobalSoilMap.net project (http://www.globalsoilmap.net/). The digital soil attribute maps are in raster format at a resolution of 3 arc sec (~90 x 90 m pixels). These maps are generated by combining the best available Digital Soil Mapping (DSM) products available across Australia. Attribute Definition: Total phosphorus; Units: %; Period (temporal coverage; approximately): 1950-2013; Spatial resolution: 3 arc seconds (approx 90m); Total number of gridded maps for this attribute: 18; Number of pixels with coverage per layer: 2007M (49200 * 40800); Total size before compression: about 8GB; Total size after compression: about 4GB; Data license : Creative Commons Attribution 4.0 (CC BY); Target data standard: GlobalSoilMap specifications; Format: GeoTIFF.less
Maps of soil constraints for the GRDC northern region as part of the final report for Northern region investment area meeting to scope and prioritise ideas CSP00209. The soil attributes include those ... morethat impact productivity and are useful in aggregate in assessing soil condition. These attributes include estimates of the quantity in the soil of: organic carbon, total N, total P, available P, clay, sand, available water holding capacity (AWC), pH and exchangeable sodium percentage (ESP). less
GRDC - A soil situation statement for the northern region - - Published 09 Nov 2017
The maps in this data base identify most profitable land use in 2050. The information plotted on the maps is classified by current and potential land use, for seven scenarios assuming new land markets... more and recent trend agricultural productivity. Each scenario assumes a different level of carbon payment for single-species plantings, expressed as a share of the maximum payment in the very strong abatement scenario. Differences in payment rate arise from the level of global abatement incentives, interacting with biodiversity settings. The analysis assumes that no land shifts from native vegetation (including forest, woodland, shrubland and grassland) to agricultural use. The H3 map is for balanced land market settings. The CSIRO Data Access portal provides individual PowerPoint slides for each scenario, individual .tif files for each scenario map. Access to the Australian National Outlook Report and Technical Report can be found at http://www.csiro.au/nationaloutlook/.less
Integration Science and Modelling (ISAM) - Modelling - Published 14 Mar 2016
Clay minerals are the most reactive inorganic components of soils. They help to determine soil properties and largely govern their behaviors and functions. Clay minerals also play important roles in b... moreiogeochemical cycling and interact with the environment to affect geomorphic processes such as weathering, erosion and deposition. This data provides new spatially explicit clay mineralogy information for Australia that will help to improve our understanding of soils and their role in the functioning of landscapes and ecosystems. I measured the abundances of kaolinite, illite and smectite in Australian soils using near infrared (NIR) spectroscopy. Using a model-tree algorithm, I built rule-based models for each mineral at two depths (0-20 cm, 60-80 cm) as a function of predictors that represent the soil-forming factors (climate, parent material, relief, vegetation and time), their processes and the scales at which they vary. The results show that climate, parent material and soil type exert the largest influence on the abundance and spatial distribution of the clay minerals; relief and vegetation have more local effects. I digitally mapped each mineral on a 3 arc-second grid. The maps show the relative abundances and distributions of kaolinite, illite and smectite in Australian soils. Kaolinite occurs in a range of climates but dominates in deeply weathered soils, in soils of higher landscapes and in regions with more rain. Illite is present in varied landscapes and may be representative of colder, more arid climates, but may also be present in warmer and wetter soil environments. Smectite is often an authigenic mineral, formed from the weathering of basalt, but it also occurs on sediments and calcareous substrates. It occurs predominantly in drier climates and in landscapes with low relief. These new clay mineral maps fill a significant gap in the availability of soil mineralogical information. They provide data to for example, assist with research into soil fertility and food production, carbon sequestration, land degradation, dust and climate modeling and paleoclimatic change. Attributes: Units of measurement: 1. Abundance of kaolin (0 - 1) for the 0-20 cm and 60-80 cm depths; 2. Abundance of illite (0 - 1) for the 0-20 cm and 60-80 cm depths; 3. Abundance of smectite (0 - 1) for the 0-20 cm and 60-80 cm depths; 4. Ternary RGB image of mineral composition for the 0-20 cm and 60-80 cm depths. For details please see Viscarra Rossel (2011). Data Type: Float Grid. Kaolinite, illite, smectite composite maps in GEOTIFF format. Map projections: Geographic. Datum: GDA94 Map units: Decimal degrees. Resolution: 0.00083333333 degrees. File Header Information: ncols 48874; nrows 40373; xllcorner 112.91246795654; yllcorner -43.642475129116; cellsize 0.00083333333333333; NODATA_value -9999; byteorder LSBFIRST.less
1181.2 TERN Facility No9 InfoGrid GRUNDY - National Soil Grid - Published 28 Aug 2015