Sorry, JavaScript must be enabled.Change your browser options, then try again.
Show ONLY:
Collection type:
Licence type:
Category:
Person:
Project:
Showing results for: [ adaptnrm ]
This collection contains AdaptNRM biodiversity change datasets and maps contextualised for Tasmania and surrounding Islands, and specifically: novel ecological environments, disappearing ecological en... morevironments, and composite ecological change datasets and maps for amphibians, reptiles, mammals, and vascular plants. The Tasmania extent of the equivalent ‘Potential degree of ecological change’ datasets are also included for completeness, although identical to the national datasets. Ecological change is derived from change in long term (30 year average) climates between the present (1990 centred) and projected future (2050 centred) under the MIROC5 and CanESM2 global climate models (RCP 8.5), scaled using Generalised Dissimilarity Modelling (GDM) of compositional turnover for four biological groups (GDMs: AMP_r2_PTS1, MAM_r2, REP_r3_v2, and VAS_v5_r11). The source GDM models are listed in related materials below (AMP_V2_R2 is the same as the model also denoted ‘AMP_r2_PTS1’; REP_V2_R3 is the same as REP_r3_v2; MAM_V1_R2 is the same as MAM_r2). The equivalent national datasets for novel and disappearing ecological environments, composite ecological change and Potential degree of ecological change are also listed in related materials below. NOVEL ECOLOGICAL ENVIRONMENTS: this metric describes the nature of the projected 2050-centred future environmental conditions for each 9s grid cell. Using each cell of a GDM projection surface, the metric looks out to all other cells in the specified region, and records the ecological similarity of the future state of the cell to the most similar cell in the present (1990-centred). A novel ecological environment is a possible new ecological environment scaled by ecological similarity that may arise in the future but which doesn’t exist anywhere at present. DISAPPEARING ECOLOGICAL ENVIRONMENTS: this metric describes the extent to which the long term average environmental conditions for each 9s grid cell in the present (1990-centred) will be present in a projected 2050 centred future. For each cell of a GDM, the metric looks out to all other cells in a specified region, and records the ecological similarity of the present state of the cell to the most similar cell in the future. A disappearing ecological environment is a present-day ecological environment scaled by ecological similarity that may become absent in the future. COMPOSITE ECOLOGICAL CHANGE: this metric is a composite measure that integrates the Potential degree of ecological change with the degree to which ecological environments are becoming novel or disappearing, showing where different combinations of change may occur and how extreme that change may be. A technical report for the project provides details about the rationale, methods and data. Further details are described in the AdaptNRM Guide “Implications of Climate Change for Biodiversity: a community-level modelling approach”, available online at: www.adaptnrm.org. Data are provided in two forms: 1. Zipped ESRI float grids: Binary float grids (*.flt) with associated ESRI header files (*.hdr) and projection files (*.prj). 2. GeoTIFF files (*.tif). After extracting from the zip archive, these files can be imported into most GIS software packages. Component measures are provided in both ESRI float and GeoTiff formats, while composite rasters are provided in GeoTiff format. Datasets in this series use a consistent naming convention: see the file readme_filenames.txt for a full explanation. Readme and xml files for how to reproduce the 3-band colours in the composite measure are also provided. Higher resolution images used in the technical report are also provided. less
Customised AdaptNRM biodiversity impact datasets for Tasmania - Ecological Change Modelling - Published 26 Apr 2017
This dataset is a series of digital map-posters accompanying the AdaptNRM Guide: Helping Biodiversity Adapt: supporting climate adaptation planning using a community-level modelling approach. These ... morerepresent supporting materials and information about the community-level biodiversity models applied to climate change. Map posters are organised by four biological groups (vascular plants, mammals, reptiles and amphibians), two climate change scenario (1990-2050 MIROC5 and CanESM2 for RCP8.5), and five measures of change in biodiversity. The map-posters present the nationally consistent data at locally relevant resolutions in eight parts – representing broad groupings of NRM regions based on the cluster boundaries used for climate adaptation planning (http://www.environment.gov.au/climate-change/adaptation) and also Nationally. Map-posters are provided in PNG image format at moderate resolution (300dpi) to suit A0 printing. The posters were designed to meet A0 print size and digital viewing resolution of map detail. An additional set in PDF image format has been created for ease of download for initial exploration and printing on A3 paper. Some text elements and map features may be fuzzy at this resolution. Each map-poster contains four dataset images coloured using standard legends encompassing the potential range of the measure, even if that range is not represented in the dataset itself or across the map extent. Most map series are provided in two parts: part 1 shows the two climate scenarios for vascular plants and mammals and part 2 shows reptiles and amphibians. Eight cluster maps for each series have a different colour theme and map extent. A national series is also provided. Annotation briefly outlines the topics presented in the Guide so that each poster stands alone for quick reference. An additional 77 National maps presenting the probability distributions of each of 77 vegetation types – NVIS 4.1 major vegetation subgroups (NVIS subgroups) - are currently in preparation. Example citations: Williams KJ, Raisbeck-Brown N, Prober S, Harwood T (2015) Generalised projected distribution of vegetation types – NVIS 4.1 major vegetation subgroups (1990 and 2050), A0 map-poster 8.1 - East Coast NRM regions. CSIRO Land and Water Flagship, Canberra. Available online at www.AdaptNRM.org and https://data.csiro.au/dap/. Williams KJ, Raisbeck-Brown N, Harwood T, Prober S (2015) Revegetation benefit (cleared natural areas) for vascular plants and mammals (1990-2050), A0 map-poster 9.1 - East Coast NRM regions. CSIRO Land and Water Flagship, Canberra. Available online at www.AdaptNRM.org and https://data.csiro.au/dap/. This dataset has been delivered incrementally. Please check that you are accessing the latest version of the dataset. less
NRM National Project - AdaptNRM Biodiversity Module - Published 18 Jan 2016
Need for assisted dispersal for Vascular Plants as a function of change in long term (30 year average) climates between the present (1990 centred) and projected future (2050 centred) under the MIROC5 ... moremodel (RCP 8.5) based on Generalised Dissimilarity Modelling (GDM) of compositional turnover. The distance to the nearest grid cell with ecological similarity of at least 0.5 is given. This metric describes the nature of the projected 2050 centred future environmental conditions for each 9s grid square. Using a Generalised Dissimilarity Model of compositional turnover (the effects of changing environment on changing species), each future location is compared with the continent in the present. For each cell, the metric looks out to all other cells in the continent, and records the ecological similarity of the future state of the cell to the most similar cell in the present. A value of 1 indicates that the future environment is similar to a current location in the present, and perfect analogue can found somewhere in Australia. A value of 0 indicates that the most similar environment to be found in the present is ecologically so different that we would expect no species in common, i.e. there are no current analogues for this environment; it is novel. Intermediate values show how ecologically similar the most similar cell is. However, no weight is given to the proximity of the most similar cell. The environment may be similar, but the cells thousands of kilometres apart. This metric was developed along with others for use in an assessment of the efficacy of the protected area system for biodiversity under climate change at continental and global scales, presented at the IUCN World Parks Congress 2014. It is described in the AdaptNRM Guide “Implications of Climate Change for Biodiversity: a community-level modelling approach”, available online at: www.adaptnrm.org. Data are provided in two forms: 1. Zipped ESRI float grids: Binary float grids (*.flt) with associated ESRI header files (*.hdr) and projection files (*.prj). After extracting from the zip archive, these files can be imported into most GIS software packages, and can be used as other binary file formats by substituting the appropriate header file. 2. ArcGIS layer package (*.lpk): These packages contain can be unpacked by ArcGIS as a raster with associated legend. Additionally a short methods summary is provided in the file 9sMethodsSummary.pdf for further information. Layers in this 9s series use a consistent naming convention: BIOLOGICAL GROUP _ FROM BASE_ TO SCENARIO_ ANALYSIS e.g. A_90_CAN85_S or R_90_MIR85_L where BIOLOGICAL GROUP is A: amphibians, M: mammals, R: reptiles and V: vascular plants less
1173.3 Strat: WPC Global Prot Area Ass - Biodiversity Adaptation Analyses - Published 23 Jun 2015
Need for assisted dispersal for Vascular Plants as a function of change in long term (30 year average) climates between the present (1990 centred) and projected future (2050 centred) under the CAN ESM... more2 model (RCP 8.5) based on Generalised Dissimilarity Modelling (GDM) of compositional turnover. The distance to the nearest grid cell with ecological similarity of at least 0.5 is given. This metric describes the nature of the projected 2050 centred future environmental conditions for each 9s grid square. Using a Generalised Dissimilarity Model of compositional turnover (the effects of changing environment on changing species), each future location is compared with the continent in the present. For each cell, the metric looks out to all other cells in the continent, and records the ecological similarity of the future state of the cell to the most similar cell in the present. A value of 1 indicates that the future environment is similar to a current location in the present, and perfect analogue can found somewhere in Australia. A value of 0 indicates that the most similar environment to be found in the present is ecologically so different that we would expect no species in common, i.e. there are no current analogues for this environment; it is novel. Intermediate values show how ecologically similar the most similar cell is. However, no weight is given to the proximity of the most similar cell. The environment may be similar, but the cells thousands of kilometres apart. This metric was developed along with others for use in an assessment of the efficacy of the protected area system for biodiversity under climate change at continental and global scales, presented at the IUCN World Parks Congress 2014. It is described in the AdaptNRM Guide “Implications of Climate Change for Biodiversity: a community-level modelling approach”, available online at: www.adaptnrm.org. Data are provided in two forms: 1. Zipped ESRI float grids: Binary float grids (*.flt) with associated ESRI header files (*.hdr) and projection files (*.prj). After extracting from the zip archive, these files can be imported into most GIS software packages, and can be used as other binary file formats by substituting the appropriate header file. 2. ArcGIS layer package (*.lpk): These packages contain can be unpacked by ArcGIS as a raster with associated legend. Additionally a short methods summary is provided in the file 9sMethodsSummary.pdf for further information. Layers in this 9s series use a consistent naming convention: BIOLOGICAL GROUP _ FROM BASE_ TO SCENARIO_ ANALYSIS e.g. A_90_CAN85_S or R_90_MIR85_L where BIOLOGICAL GROUP is A: amphibians, M: mammals, R: reptiles and V: vascular plants less
Need for assisted dispersal for Reptiles as a function of change in long term (30 year average) climates between the present (1990 centred) and projected future (2050 centred) under the MIROC5 model (... moreRCP 8.5) based on Generalised Dissimilarity Modelling (GDM) of compositional turnover. The distance to the nearest grid cell with ecological similarity of at least 0.5 is given. This metric describes the nature of the projected 2050 centred future environmental conditions for each 9s grid square. Using a Generalised Dissimilarity Model of compositional turnover (the effects of changing environment on changing species), each future location is compared with the continent in the present. For each cell, the metric looks out to all other cells in the continent, and records the ecological similarity of the future state of the cell to the most similar cell in the present. A value of 1 indicates that the future environment is similar to a current location in the present, and perfect analogue can found somewhere in Australia. A value of 0 indicates that the most similar environment to be found in the present is ecologically so different that we would expect no species in common, i.e. there are no current analogues for this environment; it is novel. Intermediate values show how ecologically similar the most similar cell is. However, no weight is given to the proximity of the most similar cell. The environment may be similar, but the cells thousands of kilometres apart. This metric was developed along with others for use in an assessment of the efficacy of the protected area system for biodiversity under climate change at continental and global scales, presented at the IUCN World Parks Congress 2014. It is described in the AdaptNRM Guide “Implications of Climate Change for Biodiversity: a community-level modelling approach”, available online at: www.adaptnrm.org. Data are provided in two forms: 1. Zipped ESRI float grids: Binary float grids (*.flt) with associated ESRI header files (*.hdr) and projection files (*.prj). After extracting from the zip archive, these files can be imported into most GIS software packages, and can be used as other binary file formats by substituting the appropriate header file. 2. ArcGIS layer package (*.lpk): These packages contain can be unpacked by ArcGIS as a raster with associated legend. Additionally a short methods summary is provided in the file 9sMethodsSummary.pdf for further information. Layers in this 9s series use a consistent naming convention: BIOLOGICAL GROUP _ FROM BASE_ TO SCENARIO_ ANALYSIS e.g. A_90_CAN85_S or R_90_MIR85_L where BIOLOGICAL GROUP is A: amphibians, M: mammals, R: reptiles and V: vascular plants less
Benefits of revegetation index for Mammals as a function of land clearing and climate change based on Generalised Dissimilarity Modelling (GDM) of compositional turnover. This metric represents the m... morearginal benefit from a unit increase of vegetation at the site, which is a direct function of the slope of the species area curve at the test state of the site. In practice, revegetation of the whole cell is likely to be impractical due to the availability of cleared land within the cell, and practical limitations such as land ownership and revegetation cost. The metric therefore excludes these factors from the analysis, allowing direct comparison of the relative benefit of a given area of revegetation between cells. The values of the index generated according to the above formula are generally low (since a significant area is required to support additional species) and the index is rescaled by multiplying by 1000 to bring it into an approximate 0-1 range. This metric was developed along with others for use in an assessment of the efficacy of the protected area system for biodiversity under climate change at continental and global scales, presented at the IUCN World Parks Congress 2014. It is described in the AdaptNRM Guide “Helping Biodiversity Adapt: Supporting climate adaptation planning using a community-level modelling approach”, available online at: www.adaptnrm.org. Data are provided in two forms: 1. Zipped ESRI float grids: Binary float grids (*.flt) with associated ESRI header files (*.hdr) and projection files (*.prj). After extracting from the zip archive, these files can be imported into most GIS software packages, and can be used as other binary file formats by substituting the appropriate header file. 2. ArcGIS layer package (*.lpk): These packages contain can be unpacked by ArcGIS as a raster with associated legend. Additionally a short methods summary is provided in the file BiodiversityModellingMethodsSummary.pdf for further information. Layers in this 9s series use a consistent naming convention: BIOLOGICAL GROUP _ FROM BASE_ TO SCENARIO_ ANALYSIS e.g. A_90_CAN85_S or R_90_MIR85_L where BIOLOGICAL GROUP is A: amphibians, M: mammals, R: reptiles and V: vascular plants less
Need for assisted dispersal for Mammals as a function of change in long term (30 year average) climates between the present (1990 centred) and projected future (2050 centred) under the CAN ESM2 model ... more(RCP 8.5) based on Generalised Dissimilarity Modelling (GDM) of compositional turnover. The distance to the nearest grid cell with ecological similarity of at least 0.5 is given. This metric describes the nature of the projected 2050 centred future environmental conditions for each 9s grid square. Using a Generalised Dissimilarity Model of compositional turnover (the effects of changing environment on changing species), each future location is compared with the continent in the present. For each cell, the metric looks out to all other cells in the continent, and records the ecological similarity of the future state of the cell to the most similar cell in the present. A value of 1 indicates that the future environment is similar to a current location in the present, and perfect analogue can found somewhere in Australia. A value of 0 indicates that the most similar environment to be found in the present is ecologically so different that we would expect no species in common, i.e. there are no current analogues for this environment; it is novel. Intermediate values show how ecologically similar the most similar cell is. However, no weight is given to the proximity of the most similar cell. The environment may be similar, but the cells thousands of kilometres apart. This metric was developed along with others for use in an assessment of the efficacy of the protected area system for biodiversity under climate change at continental and global scales, presented at the IUCN World Parks Congress 2014. It is described in the AdaptNRM Guide “Implications of Climate Change for Biodiversity: a community-level modelling approach”, available online at: www.adaptnrm.org. Data are provided in two forms: 1. Zipped ESRI float grids: Binary float grids (*.flt) with associated ESRI header files (*.hdr) and projection files (*.prj). After extracting from the zip archive, these files can be imported into most GIS software packages, and can be used as other binary file formats by substituting the appropriate header file. 2. ArcGIS layer package (*.lpk): These packages contain can be unpacked by ArcGIS as a raster with associated legend. Additionally a short methods summary is provided in the file 9sMethodsSummary.pdf for further information. Layers in this 9s series use a consistent naming convention: BIOLOGICAL GROUP _ FROM BASE_ TO SCENARIO_ ANALYSIS e.g. A_90_CAN85_S or R_90_MIR85_L where BIOLOGICAL GROUP is A: amphibians, M: mammals, R: reptiles and V: vascular plants less
Need for assisted dispersal for Reptiles as a function of change in long term (30 year average) climates between the present (1990 centred) and projected future (2050 centred) under the CAN ESM2 model... more (RCP 8.5) based on Generalised Dissimilarity Modelling (GDM) of compositional turnover. The distance to the nearest grid cell with ecological similarity of at least 0.5 is given. This metric describes the nature of the projected 2050 centred future environmental conditions for each 9s grid square. Using a Generalised Dissimilarity Model of compositional turnover (the effects of changing environment on changing species), each future location is compared with the continent in the present. For each cell, the metric looks out to all other cells in the continent, and records the ecological similarity of the future state of the cell to the most similar cell in the present. A value of 1 indicates that the future environment is similar to a current location in the present, and perfect analogue can found somewhere in Australia. A value of 0 indicates that the most similar environment to be found in the present is ecologically so different that we would expect no species in common, i.e. there are no current analogues for this environment; it is novel. Intermediate values show how ecologically similar the most similar cell is. However, no weight is given to the proximity of the most similar cell. The environment may be similar, but the cells thousands of kilometres apart. This metric was developed along with others for use in an assessment of the efficacy of the protected area system for biodiversity under climate change at continental and global scales, presented at the IUCN World Parks Congress 2014. It is described in the AdaptNRM Guide “Implications of Climate Change for Biodiversity: a community-level modelling approach”, available online at: www.adaptnrm.org. Data are provided in two forms: 1. Zipped ESRI float grids: Binary float grids (*.flt) with associated ESRI header files (*.hdr) and projection files (*.prj). After extracting from the zip archive, these files can be imported into most GIS software packages, and can be used as other binary file formats by substituting the appropriate header file. 2. ArcGIS layer package (*.lpk): These packages contain can be unpacked by ArcGIS as a raster with associated legend. Additionally a short methods summary is provided in the file 9sMethodsSummary.pdf for further information. Layers in this 9s series use a consistent naming convention: BIOLOGICAL GROUP _ FROM BASE_ TO SCENARIO_ ANALYSIS e.g. A_90_CAN85_S or R_90_MIR85_L where BIOLOGICAL GROUP is A: amphibians, M: mammals, R: reptiles and V: vascular plants less
Need for assisted dispersal for Mammals as a function of change in long term (30 year average) climates between the present (1990 centred) and projected future (2050 centred) under the MIROC5 model (R... moreCP 8.5) based on Generalised Dissimilarity Modelling (GDM) of compositional turnover. The distance to the nearest grid cell with ecological similarity of at least 0.5 is given. This metric describes the nature of the projected 2050 centred future environmental conditions for each 9s grid square. Using a Generalised Dissimilarity Model of compositional turnover (the effects of changing environment on changing species), each future location is compared with the continent in the present. For each cell, the metric looks out to all other cells in the continent, and records the ecological similarity of the future state of the cell to the most similar cell in the present. A value of 1 indicates that the future environment is similar to a current location in the present, and perfect analogue can found somewhere in Australia. A value of 0 indicates that the most similar environment to be found in the present is ecologically so different that we would expect no species in common, i.e. there are no current analogues for this environment; it is novel. Intermediate values show how ecologically similar the most similar cell is. However, no weight is given to the proximity of the most similar cell. The environment may be similar, but the cells thousands of kilometres apart. This metric was developed along with others for use in an assessment of the efficacy of the protected area system for biodiversity under climate change at continental and global scales, presented at the IUCN World Parks Congress 2014. It is described in the AdaptNRM Guide “Implications of Climate Change for Biodiversity: a community-level modelling approach”, available online at: www.adaptnrm.org. Data are provided in two forms: 1. Zipped ESRI float grids: Binary float grids (*.flt) with associated ESRI header files (*.hdr) and projection files (*.prj). After extracting from the zip archive, these files can be imported into most GIS software packages, and can be used as other binary file formats by substituting the appropriate header file. 2. ArcGIS layer package (*.lpk): These packages contain can be unpacked by ArcGIS as a raster with associated legend. Additionally a short methods summary is provided in the file 9sMethodsSummary.pdf for further information. Layers in this 9s series use a consistent naming convention: BIOLOGICAL GROUP _ FROM BASE_ TO SCENARIO_ ANALYSIS e.g. A_90_CAN85_S or R_90_MIR85_L where BIOLOGICAL GROUP is A: amphibians, M: mammals, R: reptiles and V: vascular plants less
Need for assisted dispersal for Amphibians as a function of change in long term (30 year average) climates between the present (1990 centred) and projected future (2050 centred) under the MIROC5 model... more (RCP 8.5) based on Generalised Dissimilarity Modelling (GDM) of compositional turnover. The distance to the nearest grid cell with ecological similarity of at least 0.5 is given. This metric describes the nature of the projected 2050 centred future environmental conditions for each 9s grid square. Using a Generalised Dissimilarity Model of compositional turnover (the effects of changing environment on changing species), each future location is compared with the continent in the present. For each cell, the metric looks out to all other cells in the continent, and records the ecological similarity of the future state of the cell to the most similar cell in the present. A value of 1 indicates that the future environment is similar to a current location in the present, and perfect analogue can found somewhere in Australia. A value of 0 indicates that the most similar environment to be found in the present is ecologically so different that we would expect no species in common, i.e. there are no current analogues for this environment; it is novel. Intermediate values show how ecologically similar the most similar cell is. However, no weight is given to the proximity of the most similar cell. The environment may be similar, but the cells thousands of kilometres apart. This metric was developed along with others for use in an assessment of the efficacy of the protected area system for biodiversity under climate change at continental and global scales, presented at the IUCN World Parks Congress 2014. It is described in the AdaptNRM Guide “Implications of Climate Change for Biodiversity: a community-level modelling approach”, available online at: www.adaptnrm.org. Data are provided in two forms: 1. Zipped ESRI float grids: Binary float grids (*.flt) with associated ESRI header files (*.hdr) and projection files (*.prj). After extracting from the zip archive, these files can be imported into most GIS software packages, and can be used as other binary file formats by substituting the appropriate header file. 2. ArcGIS layer package (*.lpk): These packages contain can be unpacked by ArcGIS as a raster with associated legend. Additionally a short methods summary is provided in the file 9sMethodsSummary.pdf for further information. Layers in this 9s series use a consistent naming convention: BIOLOGICAL GROUP _ FROM BASE_ TO SCENARIO_ ANALYSIS e.g. A_90_CAN85_S or R_90_MIR85_L where BIOLOGICAL GROUP is A: amphibians, M: mammals, R: reptiles and V: vascular plants less
Need for assisted dispersal for Amphibians as a function of change in long term (30 year average) climates between the present (1990 centred) and projected future (2050 centred) under the CanESM2 mode... morel (RCP 8.5) based on Generalised Dissimilarity Modelling (GDM) of compositional turnover. The distance to the nearest grid cell with ecological similarity of at least 0.5 is given. This metric describes the nature of the projected 2050 centred future environmental conditions for each 9s grid square. Using a Generalised Dissimilarity Model of compositional turnover (the effects of changing environment on changing species), each future location is compared with the continent in the present. For each cell, the metric looks out to all other cells in the continent, and records the ecological similarity of the future state of the cell to the most similar cell in the present. A value of 1 indicates that the future environment is similar to a current location in the present, and perfect analogue can found somewhere in Australia. A value of 0 indicates that the most similar environment to be found in the present is ecologically so different that we would expect no species in common, i.e. there are no current analogues for this environment; it is novel. Intermediate values show how ecologically similar the most similar cell is. However, no weight is given to the proximity of the most similar cell. The environment may be similar, but the cells thousands of kilometres apart. This metric was developed along with others for use in an assessment of the efficacy of the protected area system for biodiversity under climate change at continental and global scales, presented at the IUCN World Parks Congress 2014. It is described in the AdaptNRM Guide “Implications of Climate Change for Biodiversity: a community-level modelling approach”, available online at: www.adaptnrm.org. Data are provided in two forms: 1. Zipped ESRI float grids: Binary float grids (*.flt) with associated ESRI header files (*.hdr) and projection files (*.prj). After extracting from the zip archive, these files can be imported into most GIS software packages, and can be used as other binary file formats by substituting the appropriate header file. 2. ArcGIS layer package (*.lpk): These packages contain can be unpacked by ArcGIS as a raster with associated legend. Additionally a short methods summary is provided in the file 9sMethodsSummary.pdf for further information. Layers in this 9s series use a consistent naming convention: BIOLOGICAL GROUP _ FROM BASE_ TO SCENARIO_ ANALYSIS e.g. A_90_CAN85_S or R_90_MIR85_L where BIOLOGICAL GROUP is A: amphibians, M: mammals, R: reptiles and V: vascular plants less
1173.3 Strat: WPC Global Prot Area Ass - Biodiversity Adaptation Analyses - Published 22 Jun 2015
Composite ecological change as a function of three metrics (the potential degree of ecological change and of disappearing and novel ecological environments) shows where change might be greatest and di... morefferent types of vulnerability using 30-year climate averages between the present (1990:1976- 2005) and projected future (2050:2036-2065) under the MIROC5 global climate model (RCP 8.5), based on a Generalised Dissimilarity Modelling (GDM) of compositional turnover for vascular plants (VAS_v5_r11). Wherever the Potential degree of ecological change is scored low, ecological environments can neither be novel nor disappearing and minimal change is expected. But when the Potential degree of ecological change is scored high, a variety of possible types of change can occur depending on whether scores for Novel and/or Disappearing ecological environments are also high. To create a composite view, we assigned each of the three component measures to a colour band in a composite-band raster: local similarity as shades of green (inverted, 1-0 rescaled 0-255); novel as shades of blue (0-1 rescaled 0-255); and disappearing as shades of red (0-1 rescaled 0-255). The three layers can then be mapped simultaneously (red: band 3; green: band 1; blue: band 2) each scaled 0-255 to show the varying degrees of similar, novel and disappearing ecological environments and their combinations. This metric was developed along with others for use in an assessment of the efficacy of the protected area system for biodiversity under climate change at continental and global scales, presented at the IUCN World Parks Congress 2014. It is described in the AdaptNRM Guide “Implications of Climate Change for Biodiversity: a community-level modelling approach”, available online at: www.adaptnrm.org. Data are provided as zipped ESRI tiff grids containing: raster image (*.tif) with associated header (*.tfw) and projection (*.xml) files. After extracting from the zip archive, these files can be imported into most GIS software packages. A readme file describes how to correctly reproduce the colour legend. In ArcGIS, the symbology statistics file can be used: "SND_display.stat.XML". Reproducing RGB composite colours for 3-band raster in ArcGIS: 1. In file properties in ARCGIS, Symbology tab, Load XML "SND_display.stat.XML" 2. RED = BAND_3 (Disappearing) 3. GREEN = BAND_1 (Similarity ) 4. BLUE = BAND_2 (Novel) 5. Always use min-max legend 6. Set each band in the custom range 0-255, mean = 126, std = 0 Layers in this 9s series use a consistent naming convention: BIOLOGICAL GROUP _ FROM BASE TO SCENARIO _ ANALYSIS e.g. A_90CAN85_SND or R_90MIR85_SND where BIOLOGICAL GROUP is A: amphibians, M: mammals, R: reptiles and V: vascular plants and scenario is CAN: CanESM2; MIR: MIROC5 analysis, SND refers to – similarity, novel, disappearing less
1173.3 WPC Global Protected Area Assessm - Biodiversity Impact Analyses - Published 16 Jun 2015
Composite ecological change as a function of three metrics (the potential degree of ecological change and of disappearing and novel ecological environments) shows where change might be greatest and di... morefferent types of vulnerability using 30-year climate averages between the present (1990:1976- 2005) and projected future (2050:2036-2065) under the CanESM2 global climate model (RCP 8.5), based on a Generalised Dissimilarity Modelling (GDM) of compositional turnover for vascular plants (VAS_v5_r11). Wherever the Potential degree of ecological change is scored low, ecological environments can neither be novel nor disappearing and minimal change is expected. But when the Potential degree of ecological change is scored high, a variety of possible types of change can occur depending on whether scores for Novel and/or Disappearing ecological environments are also high. To create a composite view, we assigned each of the three component measures to a colour band in a composite-band raster: local similarity as shades of green (inverted, 1-0 rescaled 0-255); novel as shades of blue (0-1 rescaled 0-255); and disappearing as shades of red (0-1 rescaled 0-255). The three layers can then be mapped simultaneously (red: band 3; green: band 1; blue: band 2) each scaled 0-255 to show the varying degrees of similar, novel and disappearing ecological environments and their combinations. This metric was developed along with others for use in an assessment of the efficacy of the protected area system for biodiversity under climate change at continental and global scales, presented at the IUCN World Parks Congress 2014. It is described in the AdaptNRM Guide “Implications of Climate Change for Biodiversity: a community-level modelling approach”, available online at: www.adaptnrm.org. Data are provided as zipped ESRI tiff grids containing: raster image (*.tif) with associated header (*.tfw) and projection (*.xml) files. After extracting from the zip archive, these files can be imported into most GIS software packages. A readme file describes how to correctly reproduce the colour legend. In ArcGIS, the symbology statistics file can be used: "SND_display.stat.XML". Reproducing RGB composite colours for 3-band raster in ArcGIS: 1. In file properties in ARCGIS, Symbology tab, Load XML "SND_display.stat.XML" 2. RED = BAND_3 (Disappearing) 3. GREEN = BAND_1 (Similarity ) 4. BLUE = BAND_2 (Novel) 5. Always use min-max legend 6. Set each band in the custom range 0-255, mean = 126, std = 0 Layers in this 9s series use a consistent naming convention: BIOLOGICAL GROUP _ FROM BASE TO SCENARIO _ ANALYSIS e.g. A_90CAN85_SND or R_90MIR85_SND where BIOLOGICAL GROUP is A: amphibians, M: mammals, R: reptiles and V: vascular plants and scenario is CAN: CanESM2; MIR: MIROC5 analysis, SND refers to – similarity, novel, disappearing less
Composite ecological change as a function of three metrics (the potential degree of ecological change and of disappearing and novel ecological environments) shows where change might be greatest and di... morefferent types of vulnerability using 30-year climate averages between the present (1990:1976- 2005) and projected future (2050:2036-2065) under the MIROC5 global climate model (RCP 8.5), based on a Generalised Dissimilarity Modelling (GDM) of compositional turnover for reptiles (REP_R3_V2). Wherever the Potential degree of ecological change is scored low, ecological environments can neither be novel nor disappearing and minimal change is expected. But when the Potential degree of ecological change is scored high, a variety of possible types of change can occur depending on whether scores for Novel and/or Disappearing ecological environments are also high. To create a composite view, we assigned each of the three component measures to a colour band in a composite-band raster: local similarity as shades of green (inverted, 1-0 rescaled 0-255); novel as shades of blue (0-1 rescaled 0-255); and disappearing as shades of red (0-1 rescaled 0-255). The three layers can then be mapped simultaneously (red: band 3; green: band 1; blue: band 2) each scaled 0-255 to show the varying degrees of similar, novel and disappearing ecological environments and their combinations. This metric was developed along with others for use in an assessment of the efficacy of the protected area system for biodiversity under climate change at continental and global scales, presented at the IUCN World Parks Congress 2014. It is described in the AdaptNRM Guide “Implications of Climate Change for Biodiversity: a community-level modelling approach”, available online at: www.adaptnrm.org. Data are provided as zipped ESRI tiff grids containing: raster image (*.tif) with associated header (*.tfw) and projection (*.xml) files. After extracting from the zip archive, these files can be imported into most GIS software packages. A readme file describes how to correctly reproduce the colour legend. In ArcGIS, the symbology statistics file can be used: "SND_display.stat.XML". Reproducing RGB composite colours for 3-band raster in ArcGIS: 1. In file properties in ARCGIS, Symbology tab, Load XML "SND_display.stat.XML" 2. RED = BAND_3 (Disappearing) 3. GREEN = BAND_1 (Similarity ) 4. BLUE = BAND_2 (Novel) 5. Always use min-max legend 6. Set each band in the custom range 0-255, mean = 126, std = 0 Layers in this 9s series use a consistent naming convention: BIOLOGICAL GROUP _ FROM BASE TO SCENARIO _ ANALYSIS e.g. A_90CAN85_SND or R_90MIR85_SND where BIOLOGICAL GROUP is A: amphibians, M: mammals, R: reptiles and V: vascular plants and scenario is CAN: CanESM2; MIR: MIROC5 analysis, SND refers to – similarity, novel, disappearing less
Composite ecological change as a function of three metrics (the potential degree of ecological change and of disappearing and novel ecological environments) shows where change might be greatest and di... morefferent types of vulnerability using 30-year climate averages between the present (1990:1976- 2005) and projected future (2050:2036-2065) under the CanESM2 global climate model (RCP 8.5), based on a Generalised Dissimilarity Modelling (GDM) of compositional turnover for reptiles (REP_R3_V2). Wherever the Potential degree of ecological change is scored low, ecological environments can neither be novel nor disappearing and minimal change is expected. But when the Potential degree of ecological change is scored high, a variety of possible types of change can occur depending on whether scores for Novel and/or Disappearing ecological environments are also high. To create a composite view, we assigned each of the three component measures to a colour band in a composite-band raster: local similarity as shades of green (inverted, 1-0 rescaled 0-255); novel as shades of blue (0-1 rescaled 0-255); and disappearing as shades of red (0-1 rescaled 0-255). The three layers can then be mapped simultaneously (red: band 3; green: band 1; blue: band 2) each scaled 0-255 to show the varying degrees of similar, novel and disappearing ecological environments and their combinations. This metric was developed along with others for use in an assessment of the efficacy of the protected area system for biodiversity under climate change at continental and global scales, presented at the IUCN World Parks Congress 2014. It is described in the AdaptNRM Guide “Implications of Climate Change for Biodiversity: a community-level modelling approach”, available online at: www.adaptnrm.org. Data are provided as zipped ESRI tiff grids containing: raster image (*.tif) with associated header (*.tfw) and projection (*.xml) files. After extracting from the zip archive, these files can be imported into most GIS software packages. A readme file describes how to correctly reproduce the colour legend. In ArcGIS, the symbology statistics file can be used: "SND_display.stat.XML". Reproducing RGB composite colours for 3-band raster in ArcGIS: 1. In file properties in ARCGIS, Symbology tab, Load XML "SND_display.stat.XML" 2. RED = BAND_3 (Disappearing) 3. GREEN = BAND_1 (Similarity ) 4. BLUE = BAND_2 (Novel) 5. Always use min-max legend 6. Set each band in the custom range 0-255, mean = 126, std = 0 Layers in this 9s series use a consistent naming convention: BIOLOGICAL GROUP _ FROM BASE TO SCENARIO _ ANALYSIS e.g. A_90CAN85_SND or R_90MIR85_SND where BIOLOGICAL GROUP is A: amphibians, M: mammals, R: reptiles and V: vascular plants and scenario is CAN: CanESM2; MIR: MIROC5 analysis, SND refers to – similarity, novel, disappearing less
Composite ecological change as a function of three metrics (the potential degree of ecological change and of disappearing and novel ecological environments) shows where change might be greatest and di... morefferent types of vulnerability using 30-year climate averages between the present (1990:1976- 2005) and projected future (2050:2036-2065) under the MIROC5 global climate model (RCP 8.5), based on a Generalised Dissimilarity Modelling (GDM) of compositional turnover for mammals (MAM_R2). Wherever the Potential degree of ecological change is scored low, ecological environments can neither be novel nor disappearing and minimal change is expected. But when the Potential degree of ecological change is scored high, a variety of possible types of change can occur depending on whether scores for Novel and/or Disappearing ecological environments are also high. To create a composite view, we assigned each of the three component measures to a colour band in a composite-band raster: local similarity as shades of green (inverted, 1-0 rescaled 0-255); novel as shades of blue (0-1 rescaled 0-255); and disappearing as shades of red (0-1 rescaled 0-255). The three layers can then be mapped simultaneously (red: band 3; green: band 1; blue: band 2) each scaled 0-255 to show the varying degrees of similar, novel and disappearing ecological environments and their combinations. This metric was developed along with others for use in an assessment of the efficacy of the protected area system for biodiversity under climate change at continental and global scales, presented at the IUCN World Parks Congress 2014. It is described in the AdaptNRM Guide “Implications of Climate Change for Biodiversity: a community-level modelling approach”, available online at: www.adaptnrm.org. Data are provided as zipped ESRI tiff grids containing: raster image (*.tif) with associated header (*.tfw) and projection (*.xml) files. After extracting from the zip archive, these files can be imported into most GIS software packages. A readme file describes how to correctly reproduce the colour legend. In ArcGIS, the symbology statistics file can be used: "SND_display.stat.XML". Reproducing RGB composite colours for 3-band raster in ArcGIS: 1. In file properties in ARCGIS, Symbology tab, Load XML "SND_display.stat.XML" 2. RED = BAND_3 (Disappearing) 3. GREEN = BAND_1 (Similarity ) 4. BLUE = BAND_2 (Novel) 5. Always use min-max legend 6. Set each band in the custom range 0-255, mean = 126, std = 0 Layers in this 9s series use a consistent naming convention: BIOLOGICAL GROUP _ FROM BASE TO SCENARIO _ ANALYSIS e.g. A_90CAN85_SND or R_90MIR85_SND where BIOLOGICAL GROUP is A: amphibians, M: mammals, R: reptiles and V: vascular plants and scenario is CAN: CanESM2; MIR: MIROC5 analysis, SND refers to – similarity, novel, disappearing less
Composite ecological change as a function of three metrics (the potential degree of ecological change and of disappearing and novel ecological environments) shows where change might be greatest and di... morefferent types of vulnerability using 30-year climate averages between the present (1990:1976- 2005) and projected future (2050:2036-2065) under the CanESM2 global climate model (RCP 8.5), based on a Generalised Dissimilarity Modelling (GDM) of compositional turnover for mammals (MAM_R2). Wherever the Potential degree of ecological change is scored low, ecological environments can neither be novel nor disappearing and minimal change is expected. But when the Potential degree of ecological change is scored high, a variety of possible types of change can occur depending on whether scores for Novel and/or Disappearing ecological environments are also high. To create a composite view, we assigned each of the three component measures to a colour band in a composite-band raster: local similarity as shades of green (inverted, 1-0 rescaled 0-255); novel as shades of blue (0-1 rescaled 0-255); and disappearing as shades of red (0-1 rescaled 0-255). The three layers can then be mapped simultaneously (red: band 3; green: band 1; blue: band 2) each scaled 0-255 to show the varying degrees of similar, novel and disappearing ecological environments and their combinations. This metric was developed along with others for use in an assessment of the efficacy of the protected area system for biodiversity under climate change at continental and global scales, presented at the IUCN World Parks Congress 2014. It is described in the AdaptNRM Guide “Implications of Climate Change for Biodiversity: a community-level modelling approach”, available online at: www.adaptnrm.org. Data are provided as zipped ESRI tiff grids containing: raster image (*.tif) with associated header (*.tfw) and projection (*.xml) files. After extracting from the zip archive, these files can be imported into most GIS software packages. A readme file describes how to correctly reproduce the colour legend. In ArcGIS, the symbology statistics file can be used: "SND_display.stat.XML". Reproducing RGB composite colours for 3-band raster in ArcGIS: 1. In file properties in ARCGIS, Symbology tab, Load XML "SND_display.stat.XML" 2. RED = BAND_3 (Disappearing) 3. GREEN = BAND_1 (Similarity ) 4. BLUE = BAND_2 (Novel) 5. Always use min-max legend 6. Set each band in the custom range 0-255, mean = 126, std = 0 Layers in this 9s series use a consistent naming convention: BIOLOGICAL GROUP _ FROM BASE TO SCENARIO _ ANALYSIS e.g. A_90CAN85_SND or R_90MIR85_SND where BIOLOGICAL GROUP is A: amphibians, M: mammals, R: reptiles and V: vascular plants and scenario is CAN: CanESM2; MIR: MIROC5 analysis, SND refers to – similarity, novel, disappearing less
Composite ecological change as a function of three metrics (the potential degree of ecological change and of disappearing and novel ecological environments) shows where change might be greatest and di... morefferent types of vulnerability using 30-year climate averages between the present (1990:1976- 2005) and projected future (2050:2036-2065) under the CanESM2 global climate model (RCP 8.5), based on a Generalised Dissimilarity Modelling (GDM) of compositional turnover for amphibian (AMP_R2_PTS1). Wherever the Potential degree of ecological change is scored low, ecological environments can neither be novel nor disappearing and minimal change is expected. But when the Potential degree of ecological change is scored high, a variety of possible types of change can occur depending on whether scores for Novel and/or Disappearing ecological environments are also high. To create a composite view, we assigned each of the three component measures to a colour band in a composite-band raster: local similarity as shades of green (inverted, 1-0 rescaled 0-255); novel as shades of blue (0-1 rescaled 0-255); and disappearing as shades of red (0-1 rescaled 0-255). The three layers can then be mapped simultaneously (red: band 3; green: band 1; blue: band 2) each scaled 0-255 to show the varying degrees of similar, novel and disappearing ecological environments and their combinations. This metric was developed along with others for use in an assessment of the efficacy of the protected area system for biodiversity under climate change at continental and global scales, presented at the IUCN World Parks Congress 2014. It is described in the AdaptNRM Guide “Implications of Climate Change for Biodiversity: a community-level modelling approach”, available online at: www.adaptnrm.org. Data are provided as zipped ESRI tiff grids containing: raster image (*.tif) with associated header (*.tfw) and projection (*.xml) files. After extracting from the zip archive, these files can be imported into most GIS software packages. A readme file describes how to correctly reproduce the colour legend. In ArcGIS, the symbology statistics file can be used: "SND_display.stat.XML". Reproducing RGB composite colours for 3-band raster in ArcGIS: 1. In file properties in ARCGIS, Symbology tab, Load XML "SND_display.stat.XML" 2. RED = BAND_3 (Disappearing) 3. GREEN = BAND_1 (Similarity ) 4. BLUE = BAND_2 (Novel) 5. Always use min-max legend 6. Set each band in the custom range 0-255, mean = 126, std = 0 Layers in this 9s series use a consistent naming convention: BIOLOGICAL GROUP _ FROM BASE TO SCENARIO _ ANALYSIS e.g. A_90CAN85_SND or R_90MIR85_SND where BIOLOGICAL GROUP is A: amphibians, M: mammals, R: reptiles and V: vascular plants and scenario is CAN: CanESM2; MIR: MIROC5 analysis, SND refers to – similarity, novel, disappearing less
Composite ecological change as a function of three metrics (the potential degree of ecological change and of disappearing and novel ecological environments) shows where change might be greatest and di... morefferent types of vulnerability using 30-year climate averages between the present (1990:1976- 2005) and projected future (2050:2036-2065) under the MIROC5 global climate model (RCP 8.5), based on a Generalised Dissimilarity Modelling (GDM) of compositional turnover for amphibian (AMP_R2_PTS1). Wherever the Potential degree of ecological change is scored low, ecological environments can neither be novel nor disappearing and minimal change is expected. But when the Potential degree of ecological change is scored high, a variety of possible types of change can occur depending on whether scores for Novel and/or Disappearing ecological environments are also high. To create a composite view, we assigned each of the three component measures to a colour band in a composite-band raster: local similarity as shades of green (inverted, 1-0 rescaled 0-255); novel as shades of blue (0-1 rescaled 0-255); and disappearing as shades of red (0-1 rescaled 0-255). The three layers can then be mapped simultaneously (red: band 3; green: band 1; blue: band 2) each scaled 0-255 to show the varying degrees of similar, novel and disappearing ecological environments and their combinations. This metric was developed along with others for use in an assessment of the efficacy of the protected area system for biodiversity under climate change at continental and global scales, presented at the IUCN World Parks Congress 2014. It is described in the AdaptNRM Guide “Implications of Climate Change for Biodiversity: a community-level modelling approach”, available online at: www.adaptnrm.org. Data are provided as zipped ESRI tiff grids containing: raster image (*.tif) with associated header (*.tfw) and projection (*.xml) files. After extracting from the zip archive, these files can be imported into most GIS software packages. A readme file describes how to correctly reproduce the colour legend. In ArcGIS, the symbology statistics file can be used: "SND_display.stat.XML". Reproducing RGB composite colours for 3-band raster in ArcGIS: 1. In file properties in ARCGIS, Symbology tab, Load XML "SND_display.stat.XML" 2. RED = BAND_3 (Disappearing) 3. GREEN = BAND_1 (Similarity ) 4. BLUE = BAND_2 (Novel) 5. Always use min-max legend 6. Set each band in the custom range 0-255, mean = 126, std = 0 Layers in this 9s series use a consistent naming convention: BIOLOGICAL GROUP _ FROM BASE TO SCENARIO _ ANALYSIS e.g. A_90CAN85_SND or R_90MIR85_SND where BIOLOGICAL GROUP is A: amphibians, M: mammals, R: reptiles and V: vascular plants and scenario is CAN: CanESM2; MIR: MIROC5 analysis, SND refers to – similarity, novel, disappearing less
Disappearing ecological environments for Plants as a function of change in long term (30 year average) climates between the present (1990 centred) and projected future (2050 centred) under the CanESM2... more model (RCP 8.5) based on Generalised Dissimilarity Modelling (GDM) of compositional turnover. This metric describes the extent to which the long term average environmental conditions for each 9s grid square in the present (1990 centred) will be present in a projected 2050 centred future. Using a Generalised Dissimilarity Model of compositional turnover (the effects of changing environment on changing species), each location is compared with the continent in the future. For each cell, the metric looks out to all other cells in the continent, and records the ecological similarity of the present state of the cell to the most similar cell in the future. A value of 1 indicates that the environment is not disappearing, and perfect analogue is found somewhere in Australia. A value of 0 indicates that the most similar environment to be found in the future is ecologically so different that we would expect no species in common. Intermediate values show how ecologically similar the most similar cell is. However, no weight is given to the proximity of the most similar cell. The environment may be similar, but the cells thousands of kilometres apart. This metric was developed along with others for use in an assessment of the efficacy of the protected area system for biodiversity under climate change at continental and global scales, presented at the IUCN World Parks Congress 2014. It is described in the AdaptNRM Guide “Implications of Climate Change for Biodiversity: a community-level modelling approach”, available online at: www.adaptnrm.org. Data are provided in two forms: 1. Zipped ESRI float grids: Binary float grids (*.flt) with associated ESRI header files (*.hdr) and projection files (*.prj). After extracting from the zip archive, these files can be imported into most GIS software packages, and can be used as other binary file formats by substituting the appropriate header file. 2. ArcGIS layer package (*.lpk): These packages contain can be unpacked by ArcGIS as a raster with associated legend. Additionally a short methods summary is provided in the file 9sMethodsSummary.pdf for further information. Layers in this 9s series use a consistent naming convention: BIOLOGICAL GROUP _ FROM BASE_ TO SCENARIO_ ANALYSIS e.g. A_90_CAN85_S or R_90_MIR85_L where BIOLOGICAL GROUP is A: Vascular Plants, M: Vascular Plants, R: Vascular Plants and V: vascular plantsless
1173.3 Strat: WPC Global Prot Area Ass - Biodiversity Impact Analyses - Published 17 Feb 2015
This dataset is a series of digital map-posters accompanying the AdaptNRM Guide: Implications of Climate Change for Biodiversity: a community-level modelling approach. These represent supporting mat... moreerials and information about the community-level biodiversity models applied to climate change. Map posters are organised by four biological groups (vascular plants, mammals, reptiles and amphibians), two climate change scenario (1990-2050 MIROC5 and CanESM2 for RCP8.5), and six measures of change in biodiversity. The map-posters present the nationally consistent data at locally relevant resolutions in eight parts – representing broad groupings of NRM regions based on the cluster boundaries for the NRM fund (http://www.climatechange.gov.au/reducing-carbon/land-sector-measures/nrm-fund/stream-2) and also Nationally. Map-posters are provided in PNG image format at moderate resolution (300dpi) to suit A0 printing as well as in PDF format to suit initial printing. The posters were designed to meet A0 print size and digital viewing resolution. An additional set in PDF image format has been created for ease of download for initial exploration and printing on A3 paper. Some text elements and map features may be fuzzy at this lower resolution. Each map-poster contains four dataset images coloured using standard legends encompassing the potential range in ecological similarity (from 0 to 1), even if that range is not represented in the dataset itself or across the map extent. Each map series is provided in two parts: part 1 shows the two climate scenarios for vascular plants and mammals and part 2 shows reptiles and amphibians. Eight cluster maps for each series have a different colour theme and map extent. A national series is also provided. Annotation briefly outlines the topics presented in the Guide so that each poster stands alone for quick reference. Example citation: Williams KJ, Raisbeck-Brown N, Harwood T, Prober S (2014) Novel ecological environments for vascular plants and mammals (1990-2050), A0 map-poster 3.1 - East Coast NRM regions. CSIRO Land and Water Flagship, Canberra. Available online at www.AdaptNRM.org and https://data.csiro.au/dap/. This dataset has been delivered incrementally. All maps are now available, some that were previously available may have been updated. Please check that you are accessing the latest version of the dataset. less
NRM National Project - AdaptNRM Biodiversity Module - Published 12 Jan 2015
This is the high resolution version of the AdaptNRM Guide “Implications of Climate Change for Biodiversity: a community-level modelling approach” accompanies the digital datasets and maps. This versio... moren is the same as the web-version (lower resolution) available online at www.AdaptNRM.org. This AdaptNRM Module introduces a series of new measures based on ecological similarity to assess the potential for change in biodiversity under climate change at scales relevant to planning. It is intended to support assessment and lead into strategic planning in NRM. In addition to this Guide, the Module includes a series of maps in poster format and data layers. Links to the datasets and maps are given in “related materials”, below. This Guide explains how to interpret and use this information, rather than focusing on outcomes for any specific biological group, a likely future climate, or on how global human behaviour may be expressed though a particular emission scenario. In this Guide, we: 1. introduce a new approach to modelling/mapping change in biodiversity under climate change developed by CSIRO, 2. demonstrate the types of data, show how these can be viewed at national, regional and local scales, and explain their interpretation, 3. provide examples of how this information can be used in planning, with a particular focus on assessment and the core adaptation challenges outlined in The NRM Adaptation Checklist. CITATION: Williams KJ, Prober SM, Harwood TD, Doerr VAJ, Jeanneret T, Manion G, and Ferrier S (2014) Implications of climate change for biodiversity: a community-level modelling approach, CSIRO Land and Water Flagship, Canberra. Available at: www.AdaptNRM.org. ISBN 978-1-4863-0479-0 less
NRM National Project - AdaptNRM Biodiversity Module - Published 12 Dec 2014
Disappearing ecological environments for Amphibians as a function of change in long term (30 year average) climates between the present (1990 centred) and projected future (2050 centred) under the MIR... moreOC5 model (RCP 8.5) based on Generalised Dissimilarity Modelling (GDM) of compositional turnover. This metric describes the extent to which the long term average environmental conditions for each 9s grid square in the present (1990 centred) will be present in a projected 2050 centred future. Using a Generalised Dissimilarity Model of compositional turnover (the effects of changing environment on changing species), each location is compared with the continent in the future. For each cell, the metric looks out to all other cells in the continent, and records the ecological similarity of the present state of the cell to the most similar cell in the future. A value of 1 indicates that the environment is not disappearing, and perfect analogue is found somewhere in Australia. A value of 0 indicates that the most similar environment to be found in the future is ecologically so different that we would expect no species in common. Intermediate values show how ecologically similar the most similar cell is. However, no weight is given to the proximity of the most similar cell. The environment may be similar, but the cells thousands of kilometres apart. This metric was developed along with others for use in an assessment of the efficacy of the protected area system for biodiversity under climate change at continental and global scales, presented at the IUCN World Parks Congress 2014. It is described in the AdaptNRM Guide “Implications of Climate Change for Biodiversity: a community-level modelling approach”, available online at: www.adaptnrm.org. Data are provided in two forms: 1. Zipped ESRI float grids: Binary float grids (*.flt) with associated ESRI header files (*.hdr) and projection files (*.prj). After extracting from the zip archive, these files can be imported into most GIS software packages, and can be used as other binary file formats by substituting the appropriate header file. 2. ArcGIS layer package (*.lpk): These packages contain can be unpacked by ArcGIS as a raster with associated legend. Additionally a short methods summary is provided in the file 9sMethodsSummary.pdf for further information. Layers in this 9s series use a consistent naming convention: BIOLOGICAL GROUP _ FROM BASE_ TO SCENARIO_ ANALYSIS e.g. A_90_CAN85_S or R_90_MIR85_L where BIOLOGICAL GROUP is A: amphibians, M: mammals, R: reptiles and V: vascular plants less
1173.3 Strat: WPC Global Prot Area Ass - Biodiversity Impact Analyses - Published 10 Dec 2014
Disappearing ecological environments for Mammals as a function of change in long term (30 year average) climates between the present (1990 centred) and projected future (2050 centred) under the MIROC5... more model (RCP 8.5) based on Generalised Dissimilarity Modelling (GDM) of compositional turnover. This metric describes the extent to which the long term average environmental conditions for each 9s grid square in the present (1990 centred) will be present in a projected 2050 centred future. Using a Generalised Dissimilarity Model of compositional turnover (the effects of changing environment on changing species), each location is compared with the continent in the future. For each cell, the metric looks out to all other cells in the continent, and records the ecological similarity of the present state of the cell to the most similar cell in the future. A value of 1 indicates that the environment is not disappearing, and perfect analogue is found somewhere in Australia. A value of 0 indicates that the most similar environment to be found in the future is ecologically so different that we would expect no species in common. Intermediate values show how ecologically similar the most similar cell is. However, no weight is given to the proximity of the most similar cell. The environment may be similar, but the cells thousands of kilometres apart. This metric was developed along with others for use in an assessment of the efficacy of the protected area system for biodiversity under climate change at continental and global scales, presented at the IUCN World Parks Congress 2014. It is described in the AdaptNRM Guide “Implications of Climate Change for Biodiversity: a community-level modelling approach”, available online at: www.adaptnrm.org. Data are provided in two forms: 1. Zipped ESRI float grids: Binary float grids (*.flt) with associated ESRI header files (*.hdr) and projection files (*.prj). After extracting from the zip archive, these files can be imported into most GIS software packages, and can be used as other binary file formats by substituting the appropriate header file. 2. ArcGIS layer package (*.lpk): These packages contain can be unpacked by ArcGIS as a raster with associated legend. Additionally a short methods summary is provided in the file 9sMethodsSummary.pdf for further information.Tom HA Layers in this 9s series use a consistent naming convention: BIOLOGICAL GROUP _ FROM BASE_ TO SCENARIO_ ANALYSIS e.g. A_90_CAN85_S or R_90_MIR85_L where BIOLOGICAL GROUP is A: Mammals, M: mammals, R: reptiles and V: vascular plantsless
Disappearing ecological environments for Amphibians as a function of change in long term (30 year average) climates between the present (1990 centred) and projected future (2050 centred) under the Can... moreESM2 model (RCP 8.5) based on Generalised Dissimilarity Modelling (GDM) of compositional turnover. This metric describes the extent to which the long term average environmental conditions for each 9s grid square in the present (1990 centred) will be present in a projected 2050 centred future. Using a Generalised Dissimilarity Model of compositional turnover (the effects of changing environment on changing species), each location is compared with the continent in the future. For each cell, the metric looks out to all other cells in the continent, and records the ecological similarity of the present state of the cell to the most similar cell in the future. A value of 1 indicates that the environment is not disappearing, and perfect analogue is found somewhere in Australia. A value of 0 indicates that the most similar environment to be found in the future is ecologically so different that we would expect no species in common. Intermediate values show how ecologically similar the most similar cell is. However, no weight is given to the proximity of the most similar cell. The environment may be similar, but the cells thousands of kilometres apart. This metric was developed along with others for use in an assessment of the efficacy of the protected area system for biodiversity under climate change at continental and global scales, presented at the IUCN World Parks Congress 2014. It is described in the AdaptNRM Guide “Implications of Climate Change for Biodiversity: a community-level modelling approach”, available online at: www.adaptnrm.org. Data are provided in two forms: 1. Zipped ESRI float grids: Binary float grids (*.flt) with associated ESRI header files (*.hdr) and projection files (*.prj). After extracting from the zip archive, these files can be imported into most GIS software packages, and can be used as other binary file formats by substituting the appropriate header file. 2. ArcGIS layer package (*.lpk): These packages contain can be unpacked by ArcGIS as a raster with associated legend. Additionally a short methods summary is provided in the file 9sMethodsSummary.pdf for further information. Layers in this 9s series use a consistent naming convention: BIOLOGICAL GROUP _ FROM BASE_ TO SCENARIO_ ANALYSIS e.g. A_90_CAN85_S or R_90_MIR85_L where BIOLOGICAL GROUP is A: amphibians, M: mammals, R: reptiles and V: vascular plants less