Sorry, JavaScript must be enabled.Change your browser options, then try again.
Show ONLY:
Collection type:
Licence type:
Category:
Person:
Project:
Showing results for: [ Australia ]
Mean monthly solar radiation was modelled across Australia using topography from the 1 arcsecond resolution SRTM-derived DEM-S and climatic and land surface data. The SRAD model (Wilson and Gallant, 2... more000) was used to derive: • Incoming short-wave radiation on a sloping surface • Short-wave radiation ratio (shortwave on sloping surface / shortwave on horizontal surface) • Incoming long-wave radiation • Outgoing long-wave radiation • Net long-wave radiation • Net radiation • Sky view factor All radiation values are in MJ/m2/day except for short-wave radiation ratio which has no units. The sky view factor is the fraction of the sky visible from a grid cell relative to a horizontal plane. The radiation values are determined for the middle day of each month (14th or 15th) using long-term average atmospheric conditions (such as cloudiness and atmospheric transmittance) and surface conditions (albedo and vegetation cover). They include the effect of terrain slope, aspect and shadowing (for sun positions at 5 minute intervals from sunrise to sunset), direct and diffuse radiation and sky view. The monthly data in this collection are available at 1 arcsecond resolution as single (mosaicked) grids for Australia in TIFF format. The 1 arcsecond tiled data can be found here: https://data.csiro.au/dap/landingpage?pid=csiro:9530 . The 3 arc-second resolution versions of these radiation surfaces have been produced from the 1 arc-second resolution surfaces, by aggregating the cells in a 3x3 window and taking the mean value. The 3 arcsecond mosaic data can be found here: https://data.csiro.au/dap/landingpage?pid=csiro:18852less
1181.2 TERN Facility No9 InfoGrid GRUNDY - SRAD solar radiation surfaces - Published 12 Jan 2021
Mean monthly solar radiation was modelled across Australia using topography from the 1 arcsecond resolution SRTM-derived DEM-S and climatic and land surface data. The SRAD model (Wilson and Gallant, 2... more000) was used to derive: • Incoming short-wave radiation on a sloping surface • Short-wave radiation ratio (shortwave on sloping surface / shortwave on horizontal surface) • Incoming long-wave radiation • Outgoing long-wave radiation • Net long-wave radiation • Net radiation • Sky view factor All radiation values are in MJ/m2/day except for short-wave radiation ratio which has no units. The sky view factor is the fraction of the sky visible from a grid cell relative to a horizontal plane. The radiation values are determined for the middle day of each month (14th or 15th) using long-term average atmospheric conditions (such as cloudiness and atmospheric transmittance) and surface conditions (albedo and vegetation cover). They include the effect of terrain slope, aspect and shadowing (for sun positions at 5 minute intervals from sunrise to sunset), direct and diffuse radiation and sky view. The monthly data in this collection are available at 1 arcsecond resolution as single (mosaicked) grids for Australia in TIFF format. The 1 arcsecond tiled data can be found here: https://data.csiro.au/dap/landingpage?pid=csiro:9631 . The 3 arcsecond resolution versions of these radiation surfaces have been produced from the 1 arcsecond resolution surfaces, by aggregating the cells in a 3x3 window and taking the mean value. The 3 arcsecond mosaic data can be found here: https://data.csiro.au/dap/landingpage?pid=csiro:18732less
Mean monthly solar radiation was modelled across Australia using topography from the 1 arcsecond resolution SRTM-derived DEM-S and climatic and land surface data. The SRAD model (Wilson and Gallant, 2... more000) was used to derive: • Incoming short-wave radiation on a sloping surface • Short-wave radiation ratio (shortwave on sloping surface / shortwave on horizontal surface) • Incoming long-wave radiation • Outgoing long-wave radiation • Net long-wave radiation • Net radiation • Sky view factor All radiation values are in MJ/m2/day except for short-wave radiation ratio which has no units. The sky view factor is the fraction of the sky visible from a grid cell relative to a horizontal plane. The radiation values are determined for the middle day of each month (14th or 15th) using long-term average atmospheric conditions (such as cloudiness and atmospheric transmittance) and surface conditions (albedo and vegetation cover). They include the effect of terrain slope, aspect and shadowing (for sun positions at 5 minute intervals from sunrise to sunset), direct and diffuse radiation and sky view. The 3 arcsecond resolution versions of these radiation surfaces have been produced from the 1 arcsecond resolution surfaces, by aggregating the cells in a 3x3 window and taking the mean value. The data in this collection are available at 1 arcsecond resolution as 1x1 degree tiles (ESRI grid format) or as a single grid mosaic of Australia (TIFF format), and at 3 arcsecond resolution as a single grid of Australia (TIFF format).less
1181.2 TERN Facility No9 InfoGrid GRUNDY - SRAD solar radiation surfaces - Published 18 Dec 2020
Mean monthly solar radiation was modelled across Australia using topography from the 1 arcsecond resolution SRTM-derived DEM-S and climatic and land surface data. The SRAD model (Wilson and Gallant, 2... more000) was used to derive: • Incoming short-wave radiation on a sloping surface • Short-wave radiation ratio (shortwave on sloping surface / shortwave on horizontal surface) • Incoming long-wave radiation • Outgoing long-wave radiation • Net long-wave radiation • Net radiation • Sky view factor All radiation values are in MJ/m2/day except for short-wave radiation ratio which has no units. The sky view factor is the fraction of the sky visible from a grid cell relative to a horizontal plane. The radiation values are determined for the middle day of each month (14th or 15th) using long-term average atmospheric conditions (such as cloudiness and atmospheric transmittance) and surface conditions (albedo and vegetation cover). They include the effect of terrain slope, aspect and shadowing (for sun positions at 5 minute intervals from sunrise to sunset), direct and diffuse radiation and sky view. The monthly data in this collection are available at 3 arcsecond resolution as single (mosaicked) grids for Australia in TIFF format. The 3 arc-second resolution versions of these radiation surfaces have been produced from the 1 arc-second resolution surfaces, by aggregating the cells in a 3x3 window and taking the mean value. The 1 arcsecond tiled data can be found here: https://data.csiro.au/dap/landingpage?pid=csiro:9530 . The 1 arcsecond mosaic data can be found here: https://data.csiro.au/dap/landingpage?pid=csiro:18851less
Mean monthly solar radiation was modelled across Australia using topography from the 1 arcsecond resolution SRTM-derived DEM-S and climatic and land surface data. The SRAD model (Wilson and Gallant, 2... more000) was used to derive: • Incoming short-wave radiation on a sloping surface • Short-wave radiation ratio (shortwave on sloping surface / shortwave on horizontal surface) • Incoming long-wave radiation • Outgoing long-wave radiation • Net long-wave radiation • Net radiation • Sky view factor All radiation values are in MJ/m2/day except for short-wave radiation ratio which has no units. The sky view factor is the fraction of the sky visible from a grid cell relative to a horizontal plane. The radiation values are determined for the middle day of each month (14th or 15th) using long-term average atmospheric conditions (such as cloudiness and atmospheric transmittance) and surface conditions (albedo and vegetation cover). They include the effect of terrain slope, aspect and shadowing (for sun positions at 5 minute intervals from sunrise to sunset), direct and diffuse radiation and sky view. The data in this collection are available at 3 arcsecond resolution as single (mosaicked) grids for Australia in TIFF format. The 3 arcsecond resolution versions of these radiation surfaces have been produced from the 1 arcsecond resolution surfaces, by aggregating the cells in a 3x3 window and taking the mean value. The 1 arcsecond tiled data can be found here: https://data.csiro.au/dap/landingpage?pid=csiro:18335 . The 1 arcsecond mosaic data can be found here: https://data.csiro.au/dap/landingpage?pid=csiro:9634less
Mean monthly solar radiation was modelled across Australia using topography from the 1 arcsecond resolution SRTM-derived DEM-S and climatic and land surface data. The SRAD model (Wilson and Gallant, 2... more000) was used to derive: • Incoming short-wave radiation on a sloping surface • Short-wave radiation ratio (shortwave on sloping surface / shortwave on horizontal surface) • Incoming long-wave radiation • Outgoing long-wave radiation • Net long-wave radiation • Net radiation • Sky view factor All radiation values are in MJ/m2/day except for short-wave radiation ratio which has no units. The sky view factor is the fraction of the sky visible from a grid cell relative to a horizontal plane. The radiation values are determined for the middle day of each month (14th or 15th) using long-term average atmospheric conditions (such as cloudiness and atmospheric transmittance) and surface conditions (albedo and vegetation cover). They include the effect of terrain slope, aspect and shadowing (for sun positions at 5 minute intervals from sunrise to sunset), direct and diffuse radiation and sky view. The monthly data in this collection are available at 3 arcsecond resolution as single (mosaicked) grids for Australia in TIFF format. The 3 arcsecond resolution versions of these radiation surfaces have been produced from the 1 arcsecond resolution surfaces, by aggregating the cells in a 3x3 window and taking the mean value. The 1 arcsecond tiled data can be found here: https://data.csiro.au/dap/landingpage?pid=csiro:9631 . The 1 arcsecond mosaic data can be found here: https://data.csiro.au/dap/landingpage?pid=csiro:18731less
Mean monthly solar radiation was modelled across Australia using topography from the 1 arcsecond resolution SRTM-derived DEM-S and climatic and land surface data. The SRAD model (Wilson and Gallant, 2... more000) was used to derive: • Incoming short-wave radiation on a sloping surface • Short-wave radiation ratio (shortwave on sloping surface / shortwave on horizontal surface) • Incoming long-wave radiation • Outgoing long-wave radiation • Net long-wave radiation • Net radiation • Sky view factor All radiation values are in MJ/m2/day except for short-wave radiation ratio which has no units. The sky view factor is the fraction of the sky visible from a grid cell relative to a horizontal plane. The radiation values are determined for the middle day of each month (14th or 15th) using long-term average atmospheric conditions (such as cloudiness and atmospheric transmittance) and surface conditions (albedo and vegetation cover). They include the effect of terrain slope, aspect and shadowing (for sun positions at 5 minute intervals from sunrise to sunset), direct and diffuse radiation and sky view. The data in this collection are available at 1 arcsecond resolution as single (mosaicked) grids for Australia in TIFF format. The 1 arcsecond tiled data can be found here: https://data.csiro.au/dap/landingpage?pid=csiro:18335 . The 3 arcsecond resolution versions of these radiation surfaces have been produced from the 1 arcsecond resolution surfaces, by aggregating the cells in a 3x3 window and taking the mean value. The 3 arcsecond mosaic data can be found here: https://data.csiro.au/dap/landingpage?pid=csiro:18336 less
Mean monthly solar radiation was modelled across Australia using topography from the 1 arcsecond resolution SRTM-derived DEM-S and climatic and land surface data. The SRAD model (Wilson and Gallant, 2... more000) was used to derive: • Incoming short-wave radiation on a sloping surface • Short-wave radiation ratio (shortwave on sloping surface / shortwave on horizontal surface) • Incoming long-wave radiation • Outgoing long-wave radiation • Net long-wave radiation • Net radiation • Sky view factor All radiation values are in MJ/m2/day except for short-wave radiation ratio which has no units. The sky view factor is the fraction of the sky visible from a grid cell relative to a horizontal plane. The radiation values are determined for the middle day of each month (14th or 15th) using long-term average atmospheric conditions (such as cloudiness and atmospheric transmittance) and surface conditions (albedo and vegetation cover). They include the effect of terrain slope, aspect and shadowing (for sun positions at 5 minute intervals from sunrise to sunset), direct and diffuse radiation and sky view. The monthly data in this collection are available at 3 arcsecond resolution as single (mosaicked) grids for Australia in TIFF format. The 3 arcsecond resolution versions of these radiation surfaces have been produced from the 1 arcsecond resolution surfaces by aggregating the cells in a 3x3 window and taking the mean value. The 1 arcsecond tiled data can be found here: https://data.csiro.au/dap/landingpage?pid=csiro:9630 . The 1 arcsecond mosaic data can be found here: https://data.csiro.au/dap/landingpage?pid=csiro:18670less
Mean monthly solar radiation was modelled across Australia using topography from the 1 arcsecond resolution SRTM-derived DEM-S and climatic and land surface data. The SRAD model (Wilson and Gallant, 2... more000) was used to derive: • Incoming short-wave radiation on a sloping surface • Short-wave radiation ratio (shortwave on sloping surface / shortwave on horizontal surface) • Incoming long-wave radiation • Outgoing long-wave radiation • Net long-wave radiation • Net radiation • Sky view factor All radiation values are in MJ/m2/day except for short-wave radiation ratio which has no units. The sky view factor is the fraction of the sky visible from a grid cell relative to a horizontal plane. The radiation values are determined for the middle day of each month (14th or 15th) using long-term average atmospheric conditions (such as cloudiness and atmospheric transmittance) and surface conditions (albedo and vegetation cover). They include the effect of terrain slope, aspect and shadowing (for sun positions at 5 minute intervals from sunrise to sunset), direct and diffuse radiation and sky view. The monthly data in this collection are available at 1 arcsecond resolution as single (mosaicked) grids for Australia in TIFF format. The 1 arcsecond tiled data can be found here: https://data.csiro.au/dap/landingpage?pid=csiro:9630 . The 3 arcsecond resolution versions of these radiation surfaces have been produced from the 1 arcsecond resolution surfaces by aggregating the cells in a 3x3 window and taking the mean value. The 3 arcsecond mosaic data can be found here: https://data.csiro.au/dap/landingpage?pid=csiro:18671less
Mean monthly solar radiation was modelled across Australia using topography from the 1 arcsecond resolution SRTM-derived DEM-S and climatic and land surface data. The SRAD model (Wilson and Gallant, 2... more000) was used to derive: • Incoming short-wave radiation on a sloping surface • Short-wave radiation ratio (shortwave on sloping surface / shortwave on horizontal surface) • Incoming long-wave radiation • Outgoing long-wave radiation • Net long-wave radiation • Net radiation • Sky view factor All radiation values are in MJ/m2/day except for short-wave radiation ratio which has no units. The sky view factor is the fraction of the sky visible from a grid cell relative to a horizontal plane. The radiation values are determined for the middle day of each month (14th or 15th) using long-term average atmospheric conditions (such as cloudiness and atmospheric transmittance) and surface conditions (albedo and vegetation cover). They include the effect of terrain slope, aspect and shadowing (for sun positions at 5 minute intervals from sunrise to sunset), direct and diffuse radiation and sky view. The monthly data in this collection are available at 1 arcsecond resolution as single (mosaicked) grids for Australia in TIFF format. The 1 arcsecond tiled data can be found here: https://data.csiro.au/dap/landingpage?pid=csiro:9633 . The 3 arcsecond resolution versions of these radiation surfaces have been produced from the 1 arcsecond resolution surfaces by aggregating the cells in a 3x3 window and taking the mean value. The 3 arcsecond mosaic data can be found here: https://data.csiro.au/dap/landingpage?pid=csiro:18612less
Mean monthly solar radiation was modelled across Australia using topography from the 1 arcsecond resolution SRTM-derived DEM-S and climatic and land surface data. The SRAD model (Wilson and Gallant, 2... more000) was used to derive: • Incoming short-wave radiation on a sloping surface • Short-wave radiation ratio (shortwave on sloping surface / shortwave on horizontal surface) • Incoming long-wave radiation • Outgoing long-wave radiation • Net long-wave radiation • Net radiation • Sky view factor All radiation values are in MJ/m2/day except for short-wave radiation ratio which has no units. The sky view factor is the fraction of the sky visible from a grid cell relative to a horizontal plane. The radiation values are determined for the middle day of each month (14th or 15th) using long-term average atmospheric conditions (such as cloudiness and atmospheric transmittance) and surface conditions (albedo and vegetation cover). They include the effect of terrain slope, aspect and shadowing (for sun positions at 5 minute intervals from sunrise to sunset), direct and diffuse radiation and sky view. The monthly data in this collection are available at 3 arcsecond resolution as single (mosaicked) grids for Australia in TIFF format. The 3 arcsecond resolution versions of these radiation surfaces have been produced from the 1 arcsecond resolution surfaces by aggregating the cells in a 3x3 window and taking the mean value. The 1 arcsecond tiled data can be found here: https://data.csiro.au/dap/landingpage?pid=csiro:9633 . The 1 arcsecond mosaic data can be found here: https://data.csiro.au/dap/landingpage?pid=csiro:18611 less
Mean monthly solar radiation was modelled across Australia using topography from the 1 arcsecond resolution SRTM-derived DEM-S and climatic and land surface data. The SRAD model (Wilson and Gallant, 2... more000) was used to derive: • Incoming short-wave radiation on a sloping surface • Short-wave radiation ratio (shortwave on sloping surface / shortwave on horizontal surface) • Incoming long-wave radiation • Outgoing long-wave radiation • Net long-wave radiation • Net radiation • Sky view factor All radiation values are in MJ/m2/day except for short-wave radiation ratio which has no units. The sky view factor is the fraction of the sky visible from a grid cell relative to a horizontal plane. The radiation values are determined for the middle day of each month (14th or 15th) using long-term average atmospheric conditions (such as cloudiness and atmospheric transmittance) and surface conditions (albedo and vegetation cover). They include the effect of terrain slope, aspect and shadowing (for sun positions at 5 minute intervals from sunrise to sunset), direct and diffuse radiation and sky view. The monthly data in this collection are available at 3 arcsecond resolution as single (mosaicked) grids for Australia in TIFF format. The 3 arcsecond resolution versions of these radiation surfaces have been produced from the 1 arcsecond resolution surfaces, by aggregating the cells in a 3x3 window and taking the mean value. The 1 arcsecond tiled data can be found here: https://data.csiro.au/dap/landingpage?pid=csiro:9632 . The 1 arcsecond mosaic data can be found here: https://data.csiro.au/dap/landingpage?pid=csiro:18491less
Mean monthly solar radiation was modelled across Australia using topography from the 1 arcsecond resolution SRTM-derived DEM-S and climatic and land surface data. The SRAD model (Wilson and Gallant, 2... more000) was used to derive: • Incoming short-wave radiation on a sloping surface • Short-wave radiation ratio (shortwave on sloping surface / shortwave on horizontal surface) • Incoming long-wave radiation • Outgoing long-wave radiation • Net long-wave radiation • Net radiation • Sky view factor All radiation values are in MJ/m2/day except for short-wave radiation ratio which has no units. The sky view factor is the fraction of the sky visible from a grid cell relative to a horizontal plane. The radiation values are determined for the middle day of each month (14th or 15th) using long-term average atmospheric conditions (such as cloudiness and atmospheric transmittance) and surface conditions (albedo and vegetation cover). They include the effect of terrain slope, aspect and shadowing (for sun positions at 5 minute intervals from sunrise to sunset), direct and diffuse radiation and sky view. The monthly data in this collection are available at 1 arcsecond resolution as single (mosaicked) grids for Australia in TIFF format. The 1 arcsecond tiled data can be found here: https://data.csiro.au/dap/landingpage?pid=csiro:9632 . The 3 arcsecond resolution versions of these radiation surfaces have been produced from the 1 arcsecond resolution surfaces, by aggregating the cells in a 3x3 window and taking the mean value. The 3 arcsecond mosaic data can be found here: https://data.csiro.au/dap/landingpage?pid=csiro:18492less
Genotyping-by-sequencing data (raw reads and assembled/aligned) for conservation genomic study on Corybas acotiniflorus species complex (Acianthinae, Diurideae, Orchidaceae). Reference: Natascha D. Wa... moregner, Mark A. Clements, Lalita Simpson, Katharina Nargar: Conservation in the face of hybridisation: genome-wide study to evaluate taxonomic delimitation and conservation status of a threatened orchid species . Conservation Genetics (accepted manuscript). less
Australian National Herbarium - - Published 02 Dec 2020
Topographic Position Index (TPI) is a topographic position classification identifying upper, middle and lower parts of the landscape. This dataset includes a mask that identifies where topographic pos... moreition cannot be reliably derived in low relief areas. The TPI product was derived from Smoothed Digital Elevation Model (DEM-S; ANZCW0703014016), which was derived from the 1 arc-second resolution SRTM data acquired by NASA in February 2000. A masked version of the TPI product was derived using the slope relief classification product. The TPI data are available at 1 arc-second and 3 arc-second resolution. The 3 arc-second resolution dataset was generated from the 1 arc-second TPI product and masked by the 3” water and ocean mask datasets. less
1181.2 TERN Facility No9 InfoGrid GRUNDY - National Elevation and Terrain Datasets - Published 25 Aug 2020
The ASTER geoscience map of Australia is a set of digital geoscience products generated from satellite ASTER data. ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) is a Japanese ... moreimaging instrument on board USA’s TERRA satellite. The multispectral imaging sensor is the world’s first “geoscience tuned” satellite Earth Observing System. The ASTER geoscience maps of Australia represent the first continent-scale maps of the Earth’s surface mineralogy. ASTER has 14 spectral bands spanning wavelengths sensitive to important rock forming minerals, including: Iron oxides; clays; carbonates; quartz; muscovite and chlorite. Each ASTER image covers a 60 by 60 km area with individual pixel elements ranging from 15 to 90 m suitable for geoscience mapping from continent (1:2,500,000) down to mineral prospect (1:50,000) scale. The Australian mosaic is sourced from ~35,000 ASTER scenes with approximately 3500 used in the final mosaic. The products are: False colour; CSIRO Landsat TM Regolith Ratios; Green vegetation content; Ferric oxide content; Ferric oxide composition; Ferrous iron index; Opaque index; AIOH group content; AIOH group composition; Kaolin group index; FeOH group content; MgOH group content; MgOH group composition; Ferrous iron content in MgOH/carbonate; Silica Index; Quartz Index; Gypsum Index. less
COE - 3D Mineral Mapping - Mineral Mapping - Published 06 Mar 2020
The digital 3-dimenional (3D) mineral mapping suite of Queensland comprises ~20 “standardized” products at the spectral resolution of the ASTER (Advanced Space-borne Thermal Emission and Reflection Ra... morediometer) sensor and generated from publicly-available satellite, airborne, field and drill core spectral data spanning the visible near infrared (VNIR; 0.4 to 1.0 µm), shortwave infrared (SWIR; 1.0 to 2.5 µm) and thermal infrared (TIR; 7.5 to 12.0 µm) wavelength regions, including: 1. Satellite ASTER maps at both 30 m and 90 m pixel resolution with complete coverage of the state of Queensland, i.e. 1.853 million km²; 2. Airborne HyMap maps at ~5 m pixel resolution with a coverage of ~25,000 km2 from areas across north Queensland; 3. Field point samples (~300) from the National Geochemical Survey of Australia (NGSA) collected from a depth of 0-10 cm of flood overbank sediments; 4. Drill-core profiles (~20) of the National Virtual Core Library (NVCL) selected from the area around the Georgetown seismic line (07GA-IG2). Key to the processing of the remote sensing data-sets (ASTER and HyMap) was the implementation of unmixing methods to remove the effects dry and green vegetation. This unmixing was not applied to the Australian ASTER geoscience maps released in 2012 (called here Version 1 or V1) resulting in extensive areas with little/no mineral information because of the need to apply masks. The vegetation unmixing methods used in the Version 2 (V2) processing of the ASTER and HyMap imagery has resulted in very few areas without coherent mineral information. The resultant V2 “mineral group” products were designed to measure mineral information potentially useful for mapping: (i) primary rock composition; (ii) superimposed alteration effects; and (iii) regolith cover. These V2 products may assist in mapping soil properties and groundwater conditions. However their relatively low spectral resolution (based on ASTER’s 14 VNIR-SWIR-TIR bands) means that they do not provide the high level of mineralogical detail available from hyperspectral systems (>100 spectral bands), like HyMap and the HyLogger. Nevertheless, the relatively low spectral resolution of ASTER means that all other sensor data can be spectrally resampled to that resolution. Furthermore, the ASTER global data archive, which now spans entire Earth’s land surface <80degrees latitude, means that it can be used as global base-map for integrating all other spectral data. less
3D Mineral Map of Queensland - Stage 1 - mineral mapping - Published 06 Dec 2019
These data provide rasterised layers of edaphic (physical and chemical conditions of the soil) and land surface physiography (landform and geomorphology) attributes hypothesised to explain spatial pat... moreterns in biological diversity at continental scales for immediate use with statistical modelling tools. These data are intended to be used along with a similarly compiled and spatially standardised set of climatic layers (See " 0.01 degree stack of climate layers for continental analysis of biodiversity pattern: version 1.0 " in related materials).NOTE: Full details of the data, with a list of data sources and bibliography, are provided in a PDF file included as part of the data collection.less
Closed DEWHA Harness Cntnnt-wide Bdvrsty - Spatial Environmental Data Preparation - Published 11 Dec 2018
The lumped conceptual rainfall-runoff model, SIMHYD, with a Muskingum routing method is used to estimate daily runoff for 0.05° x 0.05° grid cells (~5 km x 5km) across the entire MDB. The adopted rain... morefall-runoff modelling method provides a consistent basis (that is automated and reproducible) for modelling historical runoff across the Murray-Darling Basin (MDB) and for assessing the potential impacts of climate change and development on future runoff. The historical climate scenario (Scenario A) is the baseline against which other scenarios are compared. It is based on observed climate data from 1895 to 2006. less
Legacy data - Murray Darling Basin Sustainable Yields Project - Published 04 Oct 2018
The lumped conceptual rainfall-runoff model, SIMHYD, with a Muskingum routing method is used to estimate daily runoff for 0.05° x 0.05° grid cells (~5 km x 5km) across the entire MDB. The adopted rain... morefall-runoff modelling method provides a consistent basis (that is automated and reproducible) for modelling historical runoff across the Murray-Darling Basin (MDB) and for assessing the potential impacts of climate change and development on future runoff. The future climate scenario (Scenario C) is used to assess the range of likely climate conditions around the year 2030. Forty-five future climate variants, each with 112 years of daily climate sequences, are used. The future climate variants come from scaling the 1895 to 2006 climate data to represent ~2030 climate, based on analyses of 15 global climate models (GCMs) and three global warming scenarios. As the future climate series (Scenario C) is obtained by scaling the historical daily climate series from 1895 to 2006 (Scenario A), the daily climate series for Scenarios A and C have the same length of data (112 years) and the same sequence of daily climate. Scenario C is therefore not a forecast climate at 2030, but a 112-year daily climate series based on 1895 to 2006 data adjusted to match projected global temperatures at ~2030 relative to ~1990.less
The Soil Facility produced a range of digital soil attribute products. Each product contains six digital soil attribute maps, and their upper and lower confidence limits, representing the soil attribu... morete at six depths: 0-5cm, 5-15cm, 15-30cm, 30-60cm, 60-100cm and 100-200cm. These depths are consistent with the specifications of the GlobalSoilMap.net project (http://www.globalsoilmap.net/). The digital soil attribute maps are in raster format at a resolution of 3 arc sec (~90 x 90 m pixels). Attributes included: Available Water Capacity; Bulk Density - Whole Earth; Clay; Effective Cation Exchange Capacity; pH - CaCl2; Silt; Sand; Total Nitrogen; Total Phosphorus. Period (temporal coverage; approximately): 1950-2013; Spatial resolution: 3 arc seconds (approx 90m); Total number of gridded maps for this attribute: 18; Number of pixels with coverage per layer: 2007M (49200 * 40800); Total size before compression: about 8GB; Total size after compression: about 4GB; Data license : Creative Commons Attribution 3.0 (CC By); Target data standard: GlobalSoilMap specifications; Format: GeoTIFF.less
1181.2 TERN Facility No9 InfoGrid GRUNDY - National Soil Grid - Published 19 Mar 2018
This is Version 1 of the Australian Soil Available Water Capacity product of the Soil and Landscape Grid of Australia. The Soil and Landscape Grid of Australia has produced a range of digital soil a... morettribute products. Each product contains six digital soil attribute maps, and their upper and lower confidence limits, representing the soil attribute at six depths: 0-5cm, 5-15cm, 15-30cm, 30-60cm, 60-100cm and 100-200cm. These depths are consistent with the specifications of the GlobalSoilMap.net project (http://www.globalsoilmap.net/). The digital soil attribute maps are in raster format at a resolution of 3 arc sec (~90 x 90 m pixels). These maps are generated by combining the best available Digital Soil Mapping (DSM) products available across Australia. Attribute Definition: Available water capacity computed for each of the specified depth increments; Units: %; Period (temporal coverage; approximately): 1950-2013; Spatial resolution: 3 arc seconds (approx 90m); Total number of gridded maps for this attribute: 18; Number of pixels with coverage per layer: 2007M (49200 * 40800); Total size before compression: about 8GB; Total size after compression: about 4GB; Data license : Creative Commons Attribution 4.0 (CC BY); Variance explained (cross-validation): 0.4%; Target data standard: GlobalSoilMap specifications; Format: GeoTIFF. less
1181.2 TERN Facility No9 InfoGrid GRUNDY - National Soil Grid - Published 16 Mar 2018
This is Version 1 of the Australian Soil Bulk Density - Whole Earth product of the Soil and Landscape Grid of Australia. The Soil and Landscape Grid of Australia has produced a range of digital soil... more attribute products. Each product contains six digital soil attribute maps, and their upper and lower confidence limits, representing the soil attribute at six depths: 0-5cm, 5-15cm, 15-30cm, 30-60cm, 60-100cm and 100-200cm. These depths are consistent with the specifications of the GlobalSoilMap.net project (http://www.globalsoilmap.net/). The digital soil attribute maps are in raster format at a resolution of 3 arc sec (~90 x 90 m pixels). These maps are generated by combining the best available Digital Soil Mapping (DSM) products available across Australia. Attribute Definition: Bulk Density of the whole soil (including coarse fragments) in mass per unit volume by a method equivalent to the core method; Units: g/cm3; Period (temporal coverage; approximately): 1950-2013; Spatial resolution: 3 arc seconds (approx 90m); Total number of gridded maps for this attribute: 18; Number of pixels with coverage per layer: 2007M (49200 * 40800); Total size before compression: about 8GB; Total size after compression: about 4GB; Data license : Creative Commons Attribution 4.0 (CC BY); Variance explained (cross-validation): 0.4%; Target data standard: GlobalSoilMap specifications; Format: GeoTIFF. less
This is Version 2 of the Depth of Regolith product of the Soil and Landscape Grid of Australia (produced 2015-06-01). The Soil and Landscape Grid of Australia has produced a range of digital soil att... moreribute products. The digital soil attribute maps are in raster format at a resolution of 3 arc sec (~90 x 90 m pixels). Attribute Definition: The regolith is the in situ and transported material overlying unweathered bedrock; Units: metres; Spatial prediction method: data mining using piecewise linear regression; Period (temporal coverage; approximately): 1900-2013; Spatial resolution: 3 arc seconds (approx 90m); Total number of gridded maps for this attribute:3; Number of pixels with coverage per layer: 2007M (49200 * 40800); Total size before compression: about 8GB; Total size after compression: about 4GB; Data license : Creative Commons Attribution 4.0 (CC BY); Variance explained (cross-validation): R^2 = 0.38; Target data standard: GlobalSoilMap specifications; Format: GeoTIFF.less
This is Version 1 of the Australian Soil Effective Cation Exchange Capacity product of the Soil and Landscape Grid of Australia. The Soil and Landscape Grid of Australia has produced a range of digi... moretal soil attribute products. Each product contains six digital soil attribute maps, and their upper and lower confidence limits, representing the soil attribute at six depths: 0-5cm, 5-15cm, 15-30cm, 30-60cm, 60-100cm and 100-200cm. These depths are consistent with the specifications of the GlobalSoilMap.net project (http://www.globalsoilmap.net/). The digital soil attribute maps are in raster format at a resolution of 3 arc sec (~90 x 90 m pixels). These maps are generated by combining the best available Digital Soil Mapping (DSM) products available across Australia. Attribute Definition: Cations extracted using barium chloride (BaCl2) plus exchangeable H + Al; Units: meq/100g; Period (temporal coverage; approximately): 1950-2013; Spatial resolution: 3 arc seconds (approx 90m); Total number of gridded maps for this attribute: 18; Number of pixels with coverage per layer: 2007M (49200 * 40800); Total size before compression: about 8GB; Total size after compression: about 4GB; Data license : Creative Commons Attribution 4.0 (CC BY); Target data standard: GlobalSoilMap specifications; Format: GeoTIFF. less