StereoMSI
1. Multi-spectral super-resolution dataset (extension to PIRM2018 multi-spectral super-resolution challenge dataset).
The dataset includes
- 272 training stereo registered multi-spectral RGB image pairs including the original RGB mosaic images.
- 970 raw multi-spectral images. These need to be downsampled (x2 or x3 etc.) to create low-resolution im... moreages for training a CNN for the task of super-resolution.
- 50 test images.
2. Dataset for simultaneous colour-prediction and super-resolution.
This dataset includes:
- 250 registered stereo multi-spectral/RGB image pairs for training
- 25 registered stereo multi-spectral/RGB image pairs for validation
- 21 registered stereo multi-spectral/RGB image pairs for testing. less
Computer Vision
;
Image Processing
;
Knowledge Representation and Machine Learning
https://doi.org/10.25919/5e17c1f7928d7
2017
2018
CSIRO Enquiries
CSIROEnquiries@csiro.au
1300 363 400
Super-resolution
;
SR
;
Multi-spectral
;
RGB
Shoeiby_PIRM2018_Challenge_on_Spectral_Image_Super-Resolution_Dataset_and_Study_ECCVW_2018_paper.pdf
03570154_wavelegnth_in_block
1. Images in the multi-spectral super-resolution dataset are in .tiff format.
2. Images in the colour-prediction dataset are in .tiff (RGB) and .mat (multi-spectral) formats. Converting .mat to .npy can accelerate training. See https://arxiv.org/pdf/1909.02221.pdf for more information on multi-spectral data format.
CSIRO Data Licence
CSIRO (Australia)
Shoeiby, Mehrdad (2019): StereoMSI. v2. CSIRO. Data Collection.
https://doi.org/10.25919/5e17c1f7928d7
All Rights (including copyright) CSIRO 2019.
The metadata and files (if any) are available to the public.