Biological data and environmental variables used in GDM model VAS_V5_r11
Biological data for GDM analysis were derived in April 2013 from the Australian Natural Heritage Assessment Tool (ANHAT) Database, courtesy of the Australian Government Department of the Environment. Taxonomic checking occurs before species are included in ANHAT. The vascular plants represented in this dataset comprise over 13,250 species, represented by 258 Families in 6 taxonomic Classes (Cycadopsida - 2, Liliopsida - 71, Lycopodiopsida - 3, Magnoliopsida - 177, Pinopsida - 4, Psilotopsida - 1). All taxa were grouped at the species level of taxonomic determination and unknown/unmatched taxa excluded. Introduced and cultivated plant specimen locations were excluded. Locations with a geoaccuracy > +/- 2000m were excluded; although locations that lacked a geoaccuracy estimate were included. 
To minimise the effect of under-sampling due to non-systematic survey methodologies, only sites with more than 10 species, aggregated to a 9-second grid cell, were used in the GDM analysis. Furthermore, to minimise the effect of sampling bias toward populated, accessible regions, the site-pairs used in the analysis were randomly sampled equally within and between the 85 bioregions characterising the environmental heterogeneity of the Australian continent; developed using Biodiverse software (Laffan et al. 2010) coupled with site-pair sampler software (Rosauer et al. 2014). Due to computation and processing time limitations when building the GDM model, the number of site-pairs used was approximately 1.5 million. These site-pairs encompass 2,840,100 9-second grid cells where vascular plants have been sampled continent-wide. 
The .NET GD Modeller software version 3.1 (Manion 2014) was used to develop fitted models of species compositional turnover.  The .NET software has been developed by NSW Office of Environment and Heritage to support in house applications and research collaborations, and supports CSIRO’s applications.  
Additional information about the dataset
The GDM model fitting process follows the procedure outlined in (Williams et al. 2012). Each variable group (climate, substrate, and landform) was initially tested to identify which are likely to be used in the model. The remaining variables were combined into a single model and tested for redundancy. The final subset of candidate variables was further screened for excessive correlation using a backward stepwise variable elimination procedure. Variables were retained in the model if they contributed at least 0.05% partial deviance explained when each was tested for removal. This procedure significantly reduces the number of predictors retained in the model. The potential for a 4th spline to better define the shape of the retained predictors was tested selectively for the predictors with the highest relative contribution, using the model fit criterion of at least 0.05% additional partial deviance explained. Following these tests the combined significance of the predictors was again tested using the backward elimination criterion.  In addition to the candidate environmental predictors, three under-sampling covariates were defined from the number of unique species, the number of original unique locations, and the number of unique records, aggregated to a 9-second grid cell, and tested in the model. These covariates, if included in the model, were used to partial-out the effect of under sampling of occurrence, as far as could be explained. In this version of the GDM fitted model, coarser resolution substrate variables derived from national soil and geology mapping (used in previous CSIRO modelling), were excluded from the set of candidate environmental variables considered here. Excluding the two sampling covariates, the final GDM model comprised 17 environmental predictors.
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[bookmark: _Ref401581122][bookmark: _Toc404160676]Table. The 11 climate and 6 substrate predictors used in the vascular plant GDM. 
	Code label for environmental variable (transformed grids as GDM-scaled predictors denoted *tran)
	Relative contribution in model (sum of spline coefficients)
	Brief description
	Units
	Source citation / attribution


	EAA
	1.223
	Annual total actual evapotranspiration terrain-scaled using MODIS remote sensing, averaged 1992-2011
	mm/year
	Guerschman et al. (2009); and enhancements in Appendix 4 of Reside et al. (2013)

	EAAS
	1.904
	Annual total actual evapotranspiration modelled using the Budyko Framework with terrain-scaled water holding capacity (1990-centred 30 year average)
	mm/year
	See method, Appendix 4 in Reside et al. (2013) and Claridge et al. (2000), soil attributes from Bureau of Rural Sciences (2000) and McKenzie et al. (2000); topographic wetness index from Gallant and Austin (2012); monthly climate variables from Xu and Hutchinson (2011); (Xu & Hutchinson 2013) using 9s digital elevation model (Hutchinson et al. 2008)

	EPI
	2.118
	Potential (pan) Evaporation - monthly minimum (1990-centred 30 year average), terrain-adjusted 
	mm/month
	monthly climate variables from Xu and Hutchinson (2011); (Xu & Hutchinson 2013) using 9s digital elevation model (Hutchinson et al. 2008), terrain adjustment methods from Wilson and Gallant (2000), described in Harwood et al. “methods report” with this data collection and Appendix 4 in Reside et al. (2013)

	PTI
	1.24
	Precipitation - monthly minimum (1990-centred 30 year average)
	mm/month
	monthly climate variables from Xu and Hutchinson (2011); (Xu & Hutchinson 2013) using 9s digital elevation model (Hutchinson et al. 2008)

	PTRX
	1.956
	Precipitation seasonality – maximum of differences between successive months (1990-centred 30 year average)
	mm/day
	monthly climate variables from Xu and Hutchinson (2011); (Xu & Hutchinson 2013) using 9s digital elevation model (Hutchinson et al. 2008); rate calculation devised by Williams et al. (2012)

	PTS1
	4.788
	Precipitation - solstice seasonality composite factor ratio (summer:winter rainfall ratio) (1990-centred 30 year average)
	ratio
	monthly climate variables from Xu and Hutchinson (2011); (Xu & Hutchinson 2013) using 9s digital elevation model (Hutchinson et al. 2008); seasonality calculation devised by Williams et al. (2012)

	TNX
	1.69
	Minimum temperature - monthly maximum (1990-centred 30 year average)
	°C
	monthly climate variables from Xu and Hutchinson (2011); (Xu & Hutchinson 2013) using 9s digital elevation model (Hutchinson et al. 2008)

	TXI
	1.586
	Maximum temperature - monthly minimum (1990-centred 30 year average), terrain-adjusted
	°C
	monthly climate variables from Xu and Hutchinson (2011); (Xu & Hutchinson 2013) using 9s digital elevation model (Hutchinson et al. 2008); terrain adjustment methods from Wilson and Gallant (2000), described in Harwood et al. “methods report” with this data collection and Appendix 4 in Reside et al. (2013)

	TXX
	1.049
	Maximum temperature - monthly maximum (1990-centred 30 year average), terrain-adjusted
	°C
	monthly climate variables from Xu and Hutchinson (2011); (Xu & Hutchinson 2013) using 9s digital elevation model (Hutchinson et al. 2008); terrain adjustment methods from Wilson and Gallant (2000), described in Harwood et al. “methods report” with this data collection and Appendix 4 in Reside et al. (2013)

	WDI
	0.879
	Atmospheric water deficit (precipitation minus potential evaporation) - monthly minimum (1990-centred 30 year average), terrain-adjusted
	mm
	monthly climate variables from Xu and Hutchinson (2011) using 9s digital elevation model (Hutchinson et al. 2008); terrain adjustment methods from Wilson and Gallant (2000), described in Harwood et al. “methods report” with this data collection and Appendix 4 in Reside et al. (2013)

	TRA
	0.689
	Annual temperature range as maximum temperature - monthly maximum (TXX) minus minimum temperature - monthly minimum (TNI) (1990-centred 30 year average), terrain-adjusted
	°C
	monthly climate variables from  ADDIN EN.CITE  using 9s digital elevation model (Hutchinson et al. 2008); terrain adjustment methods from Wilson and Gallant (2000), described in Harwood et al. “methods report” with this data collection and Appendix 4 in Reside et al. (2013)

	ELVR1000
	0.689
	elevation focal range within 1000m
	m
	Gallant et al. (2012)

	SME80
	0.558
	relative abundance of smectite clay minerals in surficial topsoil (0-20cm)
	proportion
	Viscarra Rossel (2011)

	PC1_20
	0.681
	Spectra of surficial topsoils 0-20cm – Principal component 1
	Index
	Viscarra-Rossel and Chen (2011)

	PC2_80
	1.178
	Spectra of surficial subsoils 60-80cm – Principal component 2
	Index
	Viscarra-Rossel and Chen (2011)

	PC3_80
	0.732
	Spectra of surficial subsoils 60-80cm – Principal component 3
	index
	Viscarra-Rossel and Chen (2011)

	WII
	0.52
	Weathering intensity index 
	Index
	Wilford (2012)

	vas_scovar1m
	0.342
	Under-sampling covariate for vascular plants related to the number of species observed at each site
	Index
	Detailed in Williams et al. (2010)

	vas_vcovar1m
	0.536
	Under-sampling covariate for vascular plants related to the number of unique site visits 
	Index
	Detailed in Williams et al. (2010)
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	Metadata field
	Value
	Notes

	About this collection

	*Collection Title
	VAS_v5_r11: Generalised dissimilarity model of compositional turnover in vascular plant species for continental Australia at 9 second resolution using ANHAT data extracted April 2013 (version 27 April 2014; with novel climate seasonality predictors and >10 species aggregated per 9-second grid cell)
	

	*Collection Description
	Compositional turnover patterns in vascular plant species across continental Australia were derived using Generalised Dissimilarity Modelling (GDM). These models use best-available biological data extracted from the Australian Natural Heritage Assessment Tool (ANHAT) Database current to April 2013 (courtesy the Australian Government Department of the Environment and the BushBlitz program) and spatial environmental predictor data compiled at 9 second resolution. The models were developed to underpin continental assessments of biodiversity significance and identify gaps in biological surveys. GDM is a statistical technique that models the dissimilarity in composition of species between pairs of surveyed locations, as a function of environmental differences between these locations. The compositional dissimilarity between a given pair of locations can be thought of as the proportion of species occurring at one location that do not occur at the other location (averaged across the two locations) - ranging from ‘0’ if the two locations have exactly the same species through to ‘1’ if they have no species in common. GDM effectively weights and transforms the environmental variables such that distances between locations in this transformed multidimensional environmental space now correlate, as closely as possible, with the observed biological compositional dissimilarities between these same locations. Once a GDM model has been fitted to the biological data from the sampled locations using environmental predictor data, it can be used to predict compositional dissimilarity values for sites lacking biological data, based purely on their mapped environmental attributes. For this purpose, a set of GDM-scaled environmental grids are produced for use in subsequent spatial assessments of biodiversity significance. This collection describes the GDM-fitted model, the GDM-scaled environmental predictors for the fitted-model which comprises substrate (constant) and 1990-centred climates, and four projected models using past and future climates: 1960-centred climates and six 2050 climate change scenarios (3 GCMs, 3 RCPs).  
	

	Lineage
	1. Biological data for vascular plants were extracted from the ANHAT database (April 2013) (courtesy the Australian Government Department of the Environment and the BushBlitz program), at the species taxonomic rank (matched to the census of Australian plants), excluding alien/introduced plant taxa and excluding cultivated/planted specimens.  Unmatched or uncertain taxa were excluded. Locations with a geoaccuracy > +/- 2000m were excluded; locations that lacked a geoaccuracy estimate were included. Approximately 1.5M site-pairs (of potentially billions) were generated using Biodiverse software (in groups of 0.0025 degrees latitude and longitude) and Perl scripts (courtesy S Laffan and D Rosauer) as a stratified random sample of 89 IBRA v7 bioregions (89 x 89 strata) weighted by 10% for selection of site-pairs within bioregions. Only grid cells with at least 11 species occurrences represented were used. A response weight variable was generated as the sum of the number of species at the two sites in the pair, irrespective of species in common).  Two independent sets of site pairs were generated of the same size and site-pair selection parameters – for model “training” and “test” (validation). 
2. The biological data grouped into 0.0025 degrees of latitude and longitude (the same as the raster grid centroids) using Biodiverse software were exported and summarized to generate the number of (unique) species in each group, the number of original (unique) latitude and longitude per group, and the number of records (unique species latitude and longitude). Three “under-sampling” covariates were subsequently generated for inclusion as candidate covariate predictors in the GDM models. The covariate calculation is detailed in the report by Williams et al, 2010 (https://publications.csiro.au/rpr/pub?list=BRO&pid=csiro:EP102983). 
2. Environmental data were compiled from best available sources of geology, soil, landform (including DEM derivatives) and climate. Climate data were derived using ANUCLIM v6.1 software with the 1990-centred (30 year average) surfaces and version 3.1, 9 second digital elevation model for Australia. Climate predictors were generated as the monthly minimum or maximum values (including a range of seasonality predictors as described in Williams et al, 2012; IJGIS, 26:2009). The ratio of topographically-shaded and slope/aspect-corrected incoming shortwave radiation relative to the unshaded radiation on a horizontal surface was used to adjust both monthly radiation and maximum temperature. Details pertaining to these calculations are published in Reside et al. 2013 (http://www.nccarf.edu.au/publications/climate-change-refugia-terrestrial-biodiversity). 
3. GDM models were fitted using .NET software (courtesy G Manion, NSW Office of Environment and Heritage), selecting environmental predictors using backward elimination by testing the partial contribution of each predictor and removing the least significant predictor until all predictors explained at least 0.05% of the model deviance in the presence of all other included predictors. These models excluded Geographic Distance between site pairs. The potential for a 4th spline to better define the shape of the predictors was tested selectively for the dominant predictors (other than PTS1 and PTS2), using the model fit criterion of at least 0.05% additional partial deviance explained. Following these tests the significance of the predictors was again tested using backward elimination. Details of the resulting fitted model and the input data table are provided with the data package. 
4. Transformed grids for the environmental predictor variables were generated for the final fitted model. The climatic predictors were replaced with past (1960-centred 75 year average) and six future (2050-centred 30 year averages) scenarios and the transformed grids generated also. The covariate predictors are not included in the set of transformed grids. Each covariate predictor is assumed to have the optimal value (no influence due to under sampling). A set of indices describing the degree of extrapolation beyond the data range for each predictor (*_ERR) and combined (ABS_ERR_SUM) used to fit the model are also provided with the package.
5. The past climate scenario for 1960 was generated using the c.75-year average monthly climate surfaces in ANUCLIM. The future climate projections (for two representative concentration pathways 8.5 and 4.5 greenhouse gas future emission scenario) were generated as 30 year averages centred on 2050 extracted from the CMIP5 database for three earth system models: MPI-ESM2 (Stevens (ed), 2013); CanESM2 (Chylek et al., 2011).; MIROC5 (Watanabe et al., 2010). Within model change grids (future minus 1990 ESM climates) were applied in ANUCLIM 6.1 and downscale to 0.0025 degrees by matching the spatial pattern of the 1990-centred surfaces (errors in the alignment of change grids have been corrected and the scenarios regenerated). Actual evapotranspiration was projected by modelling relative to the Budyko framework, using a topographically-scaled measure of soil water holding capacity (Claridge et al., 2000). Details are published in Reside et al. 2013 (http://www.nccarf.edu.au/publications/climate-change-refugia-terrestrial-biodiversity). 
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